Hereditas pada Makhluk Hidup
Ditulis oleh Ameilia Siregar pada 16-10-2010
Melalui persilangan resiprok yaitu persilangan dengan asal gamet jantan dan betina dipertukarkan, telah diketahui bahwa gamet dari masing-masing induk (Parental =P) memberikan saham yang sama di dalam pewarisan sifat. Bagian dari gamet induk yang bertanggung jawab dalam pewarisan tersebut adalah gen yang terdapat dalam kromosom. Istilah gen sebagai bahan keturunan diperkenalkan oleh W. Johanse, sedangkan istilah kromosom diperkenalkan oleh W. Waldayer.Standar Kompetensi
Menerapkan prinsip-prinsip genetik tumbuhan dan hewan
Kompetensi Dasar
4.1. Mengidentifikasi gen, kromosom, pembelahan mitosis dan meiosis.
4.2. Menerapkan Hukum Mendel dan penyimpangannya.
4.3. Mendeskripsikan mutasi dan faktor penyebabnya.
4.4. Mendeskripsikan peranan manusia dalam revolusi hijau dan revolusi biru.
4.5. Menerapkan dasar-dasar pemuliaan (penemuan bibit unggul).
Tujuan Pembelajaran
Setelah mempelajari Hereditas Pada Tumbuhan dan Hewan, Kalian diharapkan dapat memahami, menafsirkan, dan mengkomunikasikan pemahaman konsep hereditas, penerapan Hukum Mendel dan penyimpangannya serta dasar-dasar pemuliaan tumbuhan dan hewan.
Kata-Kata Kunci
Alel Antikodon Antisense Autosom Breeding Dihibrida Diploid Dominan Double helix Ekson Epistasis Fenotipe Genotipe Genom kromosom Haploid Heterozigot Hipostasis Homozigot Intron Karier Kodon Kriptomeri | Kromatin Kromomer Kromosom Kromosom homolog Kromosom kelamin Letal Lokus Modifikasi Monohibrida Mutasi Nukleosida Nukleotida Pautan Pindah silang Replikasi Seleksi Sense Sistron Template Transkripsi Translasi Triplet Rangkuman (Sistem Metabolisme Sel)Ditulis oleh Ameilia Siregar pada 14-10-2010 Zat-zat yang masuk dalam tubuh makhluk hidup dapat dalam bentuk organik maupun anorganik. Pertukaran zat meliputi anabolisme (penyusunan senyawa-senyawa organik dari senyawa sederhana menjadi senyawa kompleks dengan menggunakan energi) dan katabolisme (penguraian senyawa-senyawa organik yang kompleks menjadi sederhana dengan menghasilkan energi yang digunakan oleh makhluk hidup untuk berbagai kegiatan).Makhluk hidup memerlukan materi dan energi untuk pertumbuhannya. Berdasarkan cara mendapatkan materi dan energi, setiap makhluk hidup dibedakan menjadi 4 kelompok, yaitu: fotoautotrof, kemoautotrof, fotoheterotrof, dan kemoheterotrof. Makhluk hidup autotrof dapat mensintesis makanannya sendiri. Berdasarkan cara hidupnya, makhluk hidup heterotrof dapat dibedakan menjadi dua kelompok, yaitu: saprofit dan simbion (helotisme = parasitisme, mutualisme, dan komensalisme). Zat-zat penyusun tubuh tumbuhan diperoleh dengan analisis kimia, kultur air, kultur pasir dan analisis abu yang menghasilkan unsur hara makro, unsur hara mikro dan unsur tambahan. Kekurangan unsur-unsur hara tersebut akan menyebabkan gejala-gejala klinis tanaman seperti tanaman menjadi kuning, kekeringan, layu sampai mengalami kematian. Tumbuhan juga melakukan katabolisme (respirasi) dan anabolisme (fotosintesis dan kemosintesis). Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dengan tiga tahap yaitu glikolisis, siklus Krebs, dan transpor elektron serta respirasi anaerobik (tidak membutuhkan oksigen) yang menghasilkan fermentasi alkohol, asam laktat, atau asam sitrat. Fotosintesis adalah peristiwa penyusunan zat organik (gula) dari zat anorganik (air, karbon dioksida) dengan pertolongan energi cahaya. Beberapa ilmuwan yang melakukan penelitian tetang fotosintesis adalah Ingenhousz, T W Engelmann, Sachs, Hill dan Blackman dengan reaksi terang dan reaksi gelap. Proses penyusunan bahan organik menggunakan energi pemecahan senyawa kimia, disebut kemosintesis. Kemosintesis dilakukan oleh mikroorganisme seperti bakteri belerang (Begiota, Thiotrix), bakteri nitrit (Nitrosomonas), bakteri nitrat (Nitrosobacter), dan bakteri besi (Cladotrix). Pada peristiwa anabolisme terjadi suatu siklus yang memperlihatkan hubungan antara lingkungan abiotik dengan dunia kehidupan, seperti: daur nitrogen, daur karbon dan oksigen, daur air, daur belerang dan daur fosfor. Katalisator adalah zat yang dapat mempercepat reaksi tetapi zat tersebut tidak ikut bereaksi. Enzim merupakan biokatalisator yang mempercepat proses metabolisme pada tumbuhan dan hewan. Secara kimia, enzim yang lengkap (holoenzim) tersusun atas dua bagian, yaitu bagian protein dan bagian yang bukan protein. Ciri-ciri enzim merupakan protein, bekerja secara khusus, dapat digunakan berulang kali, rusak oleh panas, diperlukan dalam jumlah sedikit, dapat bekerja bolak-balik, kerja enzim dipengaruhi lingkungan (suhu, pH, hasil akhir, dan zat penghambat).Penamaan enzim sesuai dengan substratnya, misalnya enzim selulose adalah enzim yang dapat menguraikan selulosa. George Beadle dan Edward Tatum menemukan gen pengendali sintesis protein dan enzim yang dengan teori “one gene, one enzyme”. Enzim dan PeranannyaDitulis oleh Ameilia Siregar pada 13-10-2010 Reaksi-reaksi yang berlangsung di dalam tubuh makhluk hidup bekerja secara optimal pada suhu 30°C (suhu ruang), misalnya pada suhu tubuh tumbuhan. Sedangkan di dalam tubuh hewan homoitermis berlangsung pada suhu 37°C. Pada suhu tersebut proses oksidasi akan berjalan lambat. Agar reaksi-reaksi berjalan lebih cepat diperlukan katalisator.Katalisator adalah zat yang dapat mempercepat reaksi tetapi zat tersebut tidak ikut bereaksi. Dalam sel makhluk hidup, reaksi- reaksi kimia dapat berlangsung dengan cepat karena adanya katalisator hidup atau biokatalisator, yaitu : enzim. Enzim merupakan pengatur suatu reaksi. Berikut ini adalah contoh reaksi yang diatur oleh enzim. Contohnya: Enzim maltase Bahan tempat enzim bekerja disebut substrat. Dalam contoh reaksi di atas substratnya adalah maltosa. Bahan baru atau materi yang dibentuk sebagai hasil reaksi disebut produk. Dalam contoh reaksi di atas hanya ada 1 produk yaitu glukosa. Enzim yang mengkatalisis adalah maltase. Reaksi tersebut dapat berlangsung ke arah sebaliknya. Dengan kata lain reaksinya dua arah (reversible), maltosa dapat berubah menjadi glukosa dan glukosa dapat berubah menjadi maltosa. Enzim yang bekerja di kedua reaksi adalah maltase. Jika terdapat maltosa lebih banyak daripada glukosa, reaksi berlangsung dari kiri ke kanan. Sebaliknya, jika glukosa terdapat lebih banyak daripada maltosa, maka reaksi berlangsung dari kanan ke kiri.Maltosa ———-> 2 glukosa (substrat) <——— (produk) 3.3.1. Susunan enzim Secara kimia, enzim yang lengkap (holoenzim) tersusun atas dua bagian, yaitu bagian protein dan bagian yang bukan protein. Bagian protein disebut apoenzim, bersifat labil (mudah berubah), misalnya terpengaruh oleh suhu dan keasaman. Bagian yang bukan proteindisebut gugus prostetik (aktif), terdiri atas kofaktor atau koenzim. Kofaktor berasal dari molekul anorganik, yaitu logam, misalnya besi, tembaga, dan seng. Sedangkan koenzim merupakan gugus prostetik terdiri atas senyawa organik kompleks, misalnya NADH, FADH, koenzim A, dan vitamin B. 3.3.2. Ciri-ciri enzim Enzim merupakan suatu protein yang bekerja secara khusus, dapat digunakan berulangkali, rusak oleh panas tinggi, terpengaruh oleh pH, diperlukan dalam jumlah sedikit, dan dapat bekerja secara bolak-balik. 3.3.2.1. Protein Sebagian besar enzim (kecuali ribozime), adalah protein. Dengan demikian sifat-sifat yang dimilikinya sama dengan sifat sifat protein, yaitu: menggumpal pada suhu tinggi dan terpengaruh oleh pH 3.3.2.2. Bekerja secara khusus Enzim tertentu hanya dapat mempengaruhi reaksi tertentu, dan tidak dapat mempengaruhi reaksi lainnya. Sebagai contoh: di dalam usus rayap terdapat protozoa yang menghasilkan enzim selulase sehingga rayap dapat hidup dengan makan kayu karena dapt mencerna selulosa (salah satu jenis karbohidrat/polisakarida). Sebaliknya manusia tidak dapat mencerna kayu, meskipun mempunyai enzim amilase, yaitu enzim yang dapat mencerna amilum/pati (yang juga merupakan jenis polisakarida). Enzim amilase dan selulase masing-masing bekerja secara khusus. 3.3.2.3. Dapat digunakan berulang kali Enzim dapat digunakan berulang kali karena enzim tidak berubah pada saat terjadi reaksi. Meskipun dalam jumlah sedikit, adanya enzim dalam suatu reaksi yang dikatalisirnya akan mempercepat reaksi, karena enzim yang telah bekerja dalam reaksi tersebut dapat digunakan kembali. 3.3.2.4. Rusak oleh panas Enzim adalah suatu protein yang dapat rusak oleh panas disebut denaturasi. Kebanyakan enzim rusak pada suhu di atas 50°C. Reaksi kimia akan meningkat dua kali lipat dengan kenaikan suhu sebesar 10oC. Kenaikan suhu di atas suhu 50°C tidak dapat meningkatkan reaksi yang dikatalisir oleh enzim, tetapi justru menurunkan atau menghentikan reaksi tersebut. Hal ini disebabkan enzimnya rusak sehingga enzim tersebut tidak dapat bekerja. Demikian juga apabila kita memesan enzim-enzim dari perjalanan, dan enzim tersebut disimpan dalam lemari es. Suhu rendah tidak merusak enzim tetapi hanya menonaktifkannya saja. 3.3.2.5. Diperlukan dalam jumlah sedikit Oleh karena enzim berfungsi sebagai mempercepat reaksi, tetapi tidak ikut bereaksi, maka jumlah yang dipakai sebagai katalis tidak perlu banyak. Satu molekul enzim dapat bekerja berkali-kali, selama molekul tersebut tidak rusak. 3.3.2.6. Dapat bekerja bolak-balik Umumnya enzim dapat bekerja secara bolak-balik. Artinya, suatu enzim dapat bekerja menguraikan suatu senyawa menjadi senyawa-senyawa lain, dan sebaliknya dapat pula bekerja menyusun senyawa-senyawa itu menjadi senyawa semula. Pada tumbuhan, proses fotosintesis menghasilkan glukosa. Apabila glukosa yang dihasilkan dalam jumlah banyak, maka glukosa tersebut diubah dan disimpan dalam bentuk pati. Pada saat diperlukan, misalnya untuk pertumbuhan, pati yang disimpan sebagai cadangan makanan tersebut diubah kembali menjadi glukosa. 3.3.2.7. Kerja enzim dipengaruhi lingkungan Lingkungan yang berpengaruh pada kerja enzim adalah suhu, pH, hasil akhir, dan zat penghambat. 3.3.2.7.1 Suhu Enzim bekerja optimal pada suhu 30°C atau pada suhu tubuh dan akan rusak pada suhu tinggi. Biasanya enzim bersifat nonaktif pada suhu rendah (0°C atau di bawahnya), tetapi tidak rusak. Jika suhunya kembali normal enzim mampu bekerja kembali. Sementara pada suhu tinggi, enzim rusak dan tidak dapat berfungsi kembali. 3.3.2.7.2. pH Enzim bekerja optimal pada pH tertentu, umumnya pada pH netral. Pada kondisi asam atau basa, kerja enzim terhambat. Agar enzim dapat bekerja secara maksimal, pada penelitian/percobaan yang menggunakan enzim, kondisi pH larutan dijaga agar tidak berubah, yaitu dengan menggunakan larutan penyangga (buffer) 3.3.2.7.3. Hasil akhir Kerja enzim dipengaruhi hasil akhir. Hasil akhir yang menumpuk menyebabkan enzim sulit “bertemu’ dengan substrat. Semakin menumpuk hasil akhir, semakin lambat kerja enzim. 3.3.2.7.4. Zat penghambat Zat yang dapat menghambat kerja enzim disebut zat penghambat atau inhibitor. Zat tersebut memiliki struktur seperti enzim yang dapat masuk ke substrat, atau ada yang memiliki struktur seperti substrat sehingga enzim salah masuk ke penghambat tersebut. Hal ini dapat dijelaskan sebagai berikut: semisal enzim itu anak kunci, terdapat zat penghambat (inhibitor) yang: - strukturnya mirip anak kunci (enzim), sehingga zat penghambat itu dapat masuk ke dalam gembok kunci (substrat). - bentuknya mirip gembok kunci (substrat), sehingga enzim sebagai anak kunci “keliru masuk ” ke anak kunci palsu. 3.3.3. Penamaan enzim Enzim diberi nama sesuai dengan substratnya, diberikan akhiran ase. a. Enzim selulase, adalah enzim yang dapat menguraikan selulosa. b. Enzim lipase, menguraikan lipid atau lemak. c. Enzim protease, menguraikan protein. d. Enzim karbohidrase, menguraikan karbohidrat. Karbohidrase merupakan suatu kelompok enzim. Termasuk di dalamnya amilase, menguraikan amilum menjadi maltosa dan maltase, menguraikan maltosa menjadi glukosa. Ada dua cara penamaan enzim, yaitu secara sistematis (berdasarkan atas reaksi yang terjadi) dan trivial (nama singkat). Contohnya: ATP+ glukosa ADP+Glukosa 6-Fosfat Nama sistematik: ATP: Glukosa 6-Fosfat Nama trivial : Heksokinase Dengan berkembangnya ilmu genetika dan dilakukannya berbagai percobaan di bidang ini, dapat dibuktikan bahwa pembentukan enzim atau kelompok enzim diatur oleh gen atau kelompok gen dalam kromosom. George Beadle dan Edward Tatum mendapat hadiah novel pada tahun 1958 atas jasa mereka menemukan gen pengendali sintesis protein dan enzim yang disimpulkan dalam suatu teori “one gene, one enzyme”. 3.3.4. Cara kerja enzim Molekul selalu bergerak dan bertumbukan satu sama lain. Jika suatu molekul substrat menumbuk molekul enzim yang tepat, maka akan menempel pada enzim.Tempat menempelnya molekul substrat pada enzim disebut sisi aktif. Kemudian terjadi reaksi dan terbentuk molekul produk. Ada 2 teori mengenai kerja enzim, yaitu: a. Teori gembok anak kunci (key-lock) Sisi aktif enzim mempunyai bentuk tertentu yang hanya sesuai untuk satu jenis substrat saja Gambar 3.4 A) Substrat sesuai dengan sisi aktif seperti gembok kunci dengan anak kuncinya. Hal itu menyebabkan enzim bekerja secara spesifik. Jika enzim mengalami denaturasi (rusak) karena panas, bentuk sisi aktif berubah sehingga substrat tidak sesuai lagi. Perubahan pH juga mempunyai pengaruh yang sama. b. Teori cocok terinduksi (induced fit). Sisi aktif enzim lebih fleksibel dalam menyesuaikan struktur substrat. Ikatan antara enzim dan substrat dapat berubah menyesuaikan dengan substrat. 3.3.5. Inhibitor Merupakan zat yang dapat menghambat kerja enzim. Bersifat reversible dan irreversible. Inhibitor reversible dibedakan menjadi inhibitor kompetitif dan nonkompetitif (Gambar 3.4B ) a. Inhibitor kompetitif Menghambat kerja enzim dengan menempati sisi aktif enzim. Inhibitor ini besaing dengan substrat untuk berikatan dengan sisi aktif enzim. Pengambatan bersifat reversibel (dapat kembali seperti semula) dan dapat dihilangkan dengan menambah konsentrasi substrat. Inhibitor kompetitif misalnya malonat dan oksalosuksinat, yang bersaing dengan substrat untuk berikatan dengan enzim suksinat dehidrogenase, yaitu enzim yang bekerja pada substrat oseli suksinat. b. Inhibitor nonkompetitif Inhibitor ini biasanya berupa senyawa kimia yang tidak mirip dengan substrat dan berikatan pada sisi selain sisi aktif enzim. Ikatan ini menyebabkan perubahan bentuk enzim sehingga sisi aktif enzim tidak sesuai lagi dengan substratnya. Contohnya antibiotik penisilin menghambat kerja enzim penyusun dinding sel bakteri. Inhibitor ini bersifat reversible tetapi tidak dapat dihilangkan dengan menambahkan konsentrasi substrat. ![]() Gambar 3.4. A Kerja enzim seperti gembok-anak kunci B. Inhibitor kompetitif dan non kompetitif (Campbell, 2006) Anabolisme (Fotosintesis dan Kemosintesis)Ditulis oleh Ameilia Siregar pada 12-10-2010 3.2.1. FotosintesisLingkungan fisik menyediakan nutrien-nutrien anorganik. Semua zat anorganik yang diambil makhluk hidup akan dikembalikan lagi pada lingkungannya. Ada yang dikembalikan dalam bentuk ekskret yang dihasilkan oleh makhluk hidup waktu bereksresi, dan sisa-sisa makhluk hidup akan diuraikan (dekomposisi = demineralisasi) oleh makhluk pengurai (dekomposer) seperti cendawan dan bakteri kembali menjadi zat-zat anorganik. Fotosintesis adalah peristiwa penyusunan zat organik (gula) dari zat anorganik (air, karbon dioksida) dengan pertolongan energi cahaya. Fotosintesis dilakukan oleh tumbuhan dan makhluk hidup yang mempunyai klorofil. Komponen-komponen yang diperlukan dalam fotosintesis adalah: CO2, H2O, cahaya dan klorofil. Karbon dioksida diambil dari udara, H2O diambil dari tanah. Peranan klorofil dalam fotosintesis adalah untuk menyerap cahaya dan sumber elektron. Cahaya yang paling efektif digunakan untuk mendapatkan hasil fotosintesis yang maksimum adalah cahaya merah dan biru. Proses pembentukan karbohidrat ini berlangsung secara bertingkat. Zat yang stabil yang mula-mula terbentuk adalah gula sederhana. Kelebihan molekul-molekul gula sederhana akan disimpan dalam bentuk zat tepung (pati). melalui proses biosintesis dengan melepaskan nH2O. Untuk pembentukan 1 gram gula ternyata sama dengan jumlah energi yang diperlukan dalam pembakaran 1 gram gula yaitu 675 kilo kalori. Inilah jumlah energi yang diperlukan dalam fotosintesis. Menurut percobaan setiap 1 m2 luas daun/jam dapat menyerap ± 200 kilo kalori, sementara di dalam daun dapat terbentuk 1-2 gram gula. Jadi dapat dihitung bahwa energi yang jatuh pada daun hanya 2% yang digunakan untuk fotosintesis. Hasil lain fotosintesis, O2 dibebaskan ke udara dan ini berasal dari H2O. Ini dapat diketahui berdasarkan uji menggunakan isotop oksigen yang dilakukan oleh Ruben dan Van Niel. Bagian tubuh tumbuhan yang melakukan asimilasi C (karbon) adalah bagian yang mengandung zat hijau daun. Secara singkat, persamaan reaksi fotosintesis yang terjadi di alam dituliskan sebagai berikut: cahaya matahari 6CO2+12H2O ———> C6H12O6 + 6O2 + 6H2O klorofil Percobaan tentang Fotosintesis Fotosintesis merupakan suatu proses yang penting bagi kehidupan makhluk hidup di bumi. Dengan fotosintesis, tumbuhan menyediakan makanan bagi makhluk hidup lain baik secara langsung maupun tidak langsung. Banyak ilmuwan yang melakukan penelitian tetang fotosintesis, diantaranya adalah: 3.2.1.1 Ingenhousz Orang yang peatama sekali menemukan fotosintesis adalah Jan Ingenhousz (1730-1799). Beliau memasukkan tumbuhan air Hydrila verticilata ke dalam bejana yang diisi air. Bejana gelas itu ditutup dengan corong terbalik dan diatasnya diberi tabung reaksi yang berisi air hingga penuh. Bejana itu diletakkan di terik matahari. Tak lama kemudian muncul gelembung udara dari tumbuhan air. Setelah diuji, ternyata gelembung tersebut adalah oksigen. Ingenhousz menyimpulkan fotosintesisis menghasilkan oksigen. 3.2.1.2. T W Engelman Pada tahun 1822, T W Engelmann melakuakn percobaan menggunakan gangang Spyrogyra. Ganggang ini mempunyai kloroplas seperti spiral. Hanya kloroplas yang terkena cahaya yang mengeluarkan oksigen. Kloroplas yang tidak kena cahaya tidak mengeluarkan oksigen. Hal ini dibuktikan dengan banyaknya bakteri suka oksigen yang berkerumun di bagian kloroplas yang terkena cahaya. Kesimpulan akhirnya adalah: a. Fotosintesis dilakukan oleh kloroplas b. kloroplas hanya berfotosintesis jika terkena cahaya 3.2.1.3. Sachs Pada tahun 1860, Sachs membuktikan bahwa proses fotosintesis menghasilkan amilum. Daun yang sebagian dibungkus kertas timah (kertas bungkus rokok) dipetik di sore hari, setelah terkena matahari sejak pagi hari, daun tersebut direbus untuk dimatikan sel-selnya. Selanjutnya daun tersebut dimasukkan ke dalam alkohol, agar klorofilnya larut sehingga daun tersebut menjadi pucat. Saat daun itu ditetesi dengan iodium, bagian yang tertutup oleh ketas timah tetap pucat, sedangkan bagian daun yang tidak tertutup warnanya menjadi biru kehitaman. Warna biru kehitaman menandakan bahwa di bagian daun tersebut terdapat amilum. 3.2.1.4 Hill dan FF Blackman Hill pada tahun 1937 berhasil membuktikan bahwa energi sinar yang diterima digunakan untuk memecah molekul air menjadi H+ dan O2. Peristiwa ini dikenal sebagai fotolisis yang merupakan tahap awal dari fotosintesis. Fotolisis berlangsung dengan bantuan cahaya matahari sehingga disebut reaksi terang (lihat Gambar 3.3) Pada reaksi terang, molekul air (H2O) terurai menjadi molekul oksigen (O2), proton (H+) dan elektron. Elektron tersebut akan mengalami transport elektron melalui reaksi redoks. Pada akhir transport elektron elektron tersebut bersama dengan H+ akan ditangkap oleh NADP+ sehingga terbentuk NADPH. Selain NADPH, reaksi terang juga menghasilkan ATP. Persamaan reaksi terang adalah sebagai berikut: 12 H2O + ATP + 24 NADP+ —–> 6 O2 + ATP + 24 NADPH ![]() Reaksi terang terjadi pada membran tilakoid di grana. Grana berupa tumpukan tilakoid, terdapat di dalam kloroplas,. Tilakoid adalah membran pipih berbentuk cakram yang membrannya mengandung klorofil, pigmen fotosntesis. Blackman mengemukakan adanya reaksi gelap yang terjadi di stroma, merupakan matriks kloroplas tak berwarna yang mengandung grana. Reaksi gelap tidak memerlukan cahaya. Dalam reaksi gelap, ATP dan NADPH yang terbentuk pada reaksi terang digunakan untuk pembentukan glukosa dari karbon dioksida (lihat Gambar 3.2). Persamaan reaksinya adalah sebagai berikut: 6 O2 + ATP + NADPH —-> (CH2O)6 + 6 H2O Jika reaksi terang dan reaksi gelap tersebut digabungkan akan menghasilkan persamaan reaksi sebagai berikut: 6 O2 + 12 H2O + energi —-> C6H12O6 + 6 H2O + 6 O2 Jadi, reaksi gelap hanya berlangsung jika tersedia energi kimia (ATP dan NADPH) serta proton (H+) yang dihasilkan oleh reaksi terang. Tanpa didahului reaksi terang, reaksi gelap tidak akan berlangsung. Proses pembentukan karbohidrat terutama glukosa dilakukan melalui beberapa langkah. Di dalam stroma terdapat senyawa ribulosa bifosfat, suatu senyawa dengan 5 atom C. ribulosa bifosfat mengikat CO2 sehingga terbentuk senyawa 6C, tetapi tidak stabil sehingga terpecah menjadi 2 molekul masing-masing dengan 3 atom (asam fosfogliserat). Asam fosfogliserat diubah nenjadi gliseraldehid. Gliseraldehid mengikat fosfat membentuk gliseraldehid 3 fosfat, yang kemudian diubah menjadi dihidroksi aseton fosfat. Senyawa ini berikatan dengan gliseraldehid 3 fosfat membentuk fruktosa 1.6 difosfat, kemudian akhirnya akan membentuk glukosa. Sebagian dari gula triosa fosfat diubah kembali menjadi ribulose difosfat sehingga membentuk siklus yang dinamakan siklus Calvin (untuk menghargai penemunya, yaitu Melvin Calvin) 3.2.2. Kemosintesis Cahaya digunakan sebagai sumber energi untuk memecah molekul air. Elektron yang dihasilkan digunakan dalam proses transport elektron yang menghasilkan NADPH dan ATP. Senyawa NADH dan ATP ini digunakan untuk sintesis gula (selanjutnya diubah menjadi amilum) yang akan digunakan sebagai cadangan makanan oleh tumbuhan. Jadi, energi cahaya diubah menjadi energi yang tersimpan dalam bentuk ikatan kimia. Sumber energi tidak hanya cahaya. Beberapa mikroorganisme ada yang dapat memperoleh energi dengan jalan mengoksidasi senyawa kimia. Misalnya bakteri belerang (Begiota, Thiotrix), bakteri nitrit (Nitrosomonas), bakteri nitrat (Nitrosobacter), dan bakteri besi (Cladotrix). Bakteri belerang mengoksidasikan H2S untuk memperoleh energi. Selanjutnya energi yang diperoleh digunakan untuk melakukan asimilasi C. Proses penyusunan bahan organik itu menggunakan energi pemecahan senyawa kimia, maka disebut kemosintesis. Perhatikan reaksinya: 2H2S + O2—-> 2 H2O + 2 S + energi Energi yang diperoleh lebih kecil jumlahnya daripada yang dihasilkan dari cahaya. Energi tersebut digunakan untuk fiksasi CO2 menjadi karbohidrat. Dengan demikian, reaksi selengkapnya adalah: CO2 + 2 H2S —-> CH2O + 2S + H2O Bakteri besi memperoleh energi kimia dengan cara mengoksidasi Fe2 + menjadi Fe3 +. Bakteri Nitrosomonas dan Nitrosococcus mengoksidasi NH4 + untuk memperoleh energi dengan reaksi berikut ini: (NH4)2 CO3 + 3 O2 —-> 2 HNO2 + CO2 + 3H2O + Energi Demikian pula bakteri Nitrobacter melakukan kemosintesis untuk menghasilkan energi dengan reaksi sebagai berikut: Ca (NO2)2 + O2 Ca (NO3)2 + Energi Bakteri di atas dapat melakukan asimilasi C. Kemampuan ini dapat dibuktikan dengan memelihara bakteri tersebut dan memberikan zat-zat anorganik saja, ternyata bakteri tersebut dapat hidup dan berkembang. Apakah CO2 di alam akan habis karena dipakai tumbuhan untuk asimilasi C? Tentu saja jawabannya tidak. CO2 yang terpakai untuk asimilasi tumbuhan dan makhluk hidup fotosintetik lainnya diganti dengan CO2 dari pernapasan semua makhluk hidup, hasil pembakaran bahan- bahan organik, kegiatan gunung api, dan aktivitas makhluk hidup lainnya. Proses anabolisme dan katabolisme terjadi silih berganti. Reaksi– reaksi kimia yang terjadi dalam dunia kehidupan, melibatkan lingkungan fisik di sekitarnya sehingga terjadi daur materi seperti: daur nitrogen, daur karbon dan oksigen, daur air, daur belerang dan daur fosfor. Daur nitrogen Nitrogen atau zat lemas merupakan unsur yang diperlukan oleh setiap makhluk hidup. Nitrogen tidak diperlukan dalam bentuk unsur, melainkan dalam bentuk persenyawaan. Atmosfer bumi mengandung 79% gas nitrogen. Gas ini sulit bereaksi dan karenanya tidak dapat dimanfaatkan secara langsung oleh makhluk hidup. Apa fungsi nitrogen bagi tubuh makhluk hidup? Nitrogen merupakan salah satu pembentuk asam amino. Asam amino merupakan persenyawaan pembentuk protein. Protein merupakan senyawa yang berguna sebagai penyusun tubuh, misalnya otot, daging, dan sebagai penggiat reaksi-reaksi metabolisme tubuh, misalnya enzim pencernaan untuk mencernakan makanan. Karena petir, nitrogen di atmosfer bersenyawa dengan oksigen membentuk nitrat (NO3). Tumbuhan menyerap nitrat dari tanah untuk dijadikan protein. Ketika tumbuhan dimakan konsumer, nitrogen berpindah ke tubuh hewan. Urin, bangkai hewan, dan tumbuhan yang mati akan diuraikan oleh makhluk hidup pengurai menjadi amonium dan amoniak. Bakteri nitrit Nitrosomonas mengubah amonium menjadi nitrit. Selanjutnya bakteri nitrat Nitrosobacter akan mengubah nitrit menjadi nitrat. Peristiwa pengubahan amonium menjadi nitrit dan nitrat disebut sebagai nitrifikasi. Nitrat akan diserap lagi oleh tumbuhan. Ada pula bakteri yang mampu mengubah nitrat atau nitrit menjadi nitrogen bebas di udara. Proses ini disebut sebagai denitrifikasi. Pada umumnya makhluk hidup tidak mampu memanfaatkan nitrogen secara langsung dari udara. Akan tetapi ada pula yang dapat memanfaatkannya. Contohnya bakteri Rhizobium yang bersimbiosis dengan kacang-kacangan (kelompok Leguminosae) membentuk bintil akar dan mampu mengikat nitrogen dari udara. Bakteri tersebut sangat menguntungkan para petani, karena dapat menyediakan nitrogen bagi tumbuhan inangnya dan juga dapat menyuburkan tanah. Tanah yang kekurangan bakteri Rhizobium dapat ditaburi dengan legin, yaitu biakan bakteri pengikat nitrogen yang saat ini sudah banyak dijualbelikan. Jika tanah tersebut pernah ditanami tanaman kacang-kacangan berarti tanah tersebut sudah mengandung Rhizobium. Bila kalian menanam kedelai, tidak perlu memupuk (ZA, urea) dalam jumlah banyak, karena sebagian dari N tersebut akan dipenuhi oleh Rhizobium yang ada dalam bintil akar. Daur karbon dan oksigen Unsur C (karbon) diserap tumbuhan dalam bentuk CO 2. Tumbuhan tidak dapat menyerapnya dalam bentuk gula atau zat tepung. Sebaliknya, hewan hanya dapat memanfaatkan karbon dalam bentuk persenyawaan organik. Unsur C dan O selalu terlibat dalam proses respirasi dan fotosintesis, yaitu dalam bentuk CO 2 dan O 2. Oleh karena itu, membahas daur karbon pada dasarnya juga melibatkan pembahasan daur oksigen. Daur karbon ini diawali oleh penyerapan CO 2 oleh tumbuhan, dan dijadikan persenyawaan organik, seperti glukosa, melalui proses fotosintesis. Selanjutnya, glukosa disusun menjadi amilum, kemudian amilum diubah menjadi senyawa organik lainnya seperti, lemak, protein, dan vitamin. Pada proses pernafasan tumbuhan, dihasilkan lagi CO2. Dengan demikian, daur karbon terpendek terjadi pada tumbuhan-lingkungan-tumbuhan. Demikian pula daur oksigen. Hewan mendapatkan karbon setelah memakan tumbuhan baik secara langsung maupun tak langsung. Tubuh hewan dan tumbuhan yang mati diuraikan menjadi karbon dioksida, air, dan mineral oleh makhluk hidup pengurai. Karbon dioksida yang terbentuk dilepaskan ke udara. Demikian seterusnya daur karbon ini berlangsung. Daur karbon ini merupakan daur karbon terpanjang yang berlangsung melalui tumbuhan-hewan-pengurai-karbon dioksida di udaratumbuhan. Dalam ekosistem normal, terjadi keseimbangan antara daur karbon dan oksigen. Oksigen diserap hewan dan tumbuhan untuk respirasi dan hasilnya berupa karbon dioksida akan dilepaskan ke udara. Karbon dioksida ini digunakan oleh tumbuhan untuk fotosintesis. Daur air Air sangat penting artinya bagi makhluk hidup karena air berfungsi sebagi pelarut kation dan anion, pengatur suhu tubuh, pengatur tekanan osmotik sel, dan bahan baku untuk fotosintesis. Bagi manusia, air bermanfaat untuk minum, mandi, mencuci, irigasi, pariwisata, dan pembangkit tenaga listrik. Di alam terjadi daur air yang dapat diuraikan sebagai berikut. Air laut, danau, dan sungai yang terkena cahaya matahari akan menguap. Tumbuhan dan hewan juga mengeluarkan uap air. Uap air akan membumbung ke atmosfer dan berkumpul membentuk awan. Karen tiupan angin, awan akan bergerak menuju ke permukaan daratan. Pengaruh suhu yang rendah mengakibatkan terjadinya kondensasi uap air menjadi titik-titik air hujan. Air hujan yang turun di permukaan, sebagian meresap kedalam tanah, sebagian dimanfaatkan tumbuhan dan hewan, sebagian yang lain mengalir di permukaan tanah menjadi sungai-sungai, dan sebagian lagi menguap menjadi uap air yang akan turun kembali bersama air hujan. Air yang meresap kedalam tanah bergerak menuju tempat-tempat yang rendah karena gravitasi bumi. Pada tempat tertentu muncul sebagai mata air yang akan mengalir sebagai sungai. Di sungai, air dimanfaatkan lagi oleh biota sungai. Sungai yang menampung air, baik dari air tanah, air hujan, maupun kelebihan air telah dimanfaatkan manusia akhirnya mengalir menuju laut. Indonesia merupakan negara di daerah khatulistiwa memilki daur air alami. Secara kuantitatif Indonesia seharusnya tidak kekurangan air. Akan tetapi, karena gangguan terhadap daur air alami, misalnya akibat penebangan hutan secara liar, proses peresapan air terganggu sehingga timbul banjir. Demikian juga, kuantitas air tidak terdistribusi sebagaimana mestinya. Akibatnya, pada musim hujan terjadi banjir, sedangkan pada musim kemarau terjadi kekeringan. Selain ini, air bersih menjadi semakin langka karena pencemaran. Daur belerang Belerang (sulfur) merupakan unsur penyusun protein. Tumbuhan mendapatkan belerang dari dalam tanah dalam bentuk sulfat (SO4 2-). Di dalam tubuh tumbuhan, belerang digunakan sebagai penyusun protein. Hewan dan manusia mendapatkan belerang dengan jalan memakan tumbuhan. Jika tumbuhan dan hewan mati, mikroorganisme akan menguraikannya menjadi gas berbau busuk yaitu H2S atau menjadi SO2 dan SO4 2-. Secara alami, belerang terkandung di dalam tanah dalam bnetuk mineral tanah. Beberapa gunung berapi, misalnya Gunung Arjuno di Jawa Timur, mengeluarkan belerang yang kemudian ditambang menjadi belerang batangan. Gas belerang dihembuskan ke udara. Selain itu, belerang di udara juga berasal dari sisa pembakaran minyak bumi dan batubara, dalam bentuk SO2. Gas demikian banyak dihasilkan oleh asap kenderaan dan pabrik. Karena uap air hujan, gas tersebut berubah menjadi sulfat, yang jatuh di tanah, sungai, atau lautan. Selanjutnya sulfat dapat dimanfaatkan oleh tumbuhan atau ganggang. Daur fosfor Fosfor merupakan bahan pembentuk tulang pada hewan. Semua makhluk hidup memerlukan fosfor karena digunakan sebagai pembentuk DNA, RNA, protein, energi (ATP), dan senyawa organik lainnya. Daur fosfor terjadi melalui proses berikut. Di dalam tanah, terkandung fosfat anorganik yang dapat diserap tumbuhan. Hewan mendapatkan fosfor setelah memakan tumbuhan. Tumbuhan dan hewan yang mati, feses, dan urinnya akan terurai menghasilkan fosfat organik. Oleh bakteri, fosfat organik akan di ubah menjadi fosfat anorganik yang dapat diserap tumbuhan. Di dalam ekosistem air, juga terjadi daur fosfor, yakni tumbuhan hewan air –> bakteri –> fosfat anorganik. Bagian tumbuhan yang jatuh ke dasar danau yang dalam atau lautan dalam akan membentuk endapan fosfor (batuan fosfor) yang tiak dapat dimanfaatkan kembali. Inilah salah satu alasan semakin kecilnya ekosistem air dalam yang tidak mempunyai arus air. Lautan yang memiliki arus air mengakibatkan endapan fosfor teraduk dan menyuburkan ekosistem laut. Pada tempat-tempat tertentu terjadi penimbunan fosfor karena pemupukan kotoran burung. Kotoran burung ini dijadikan sebagai pupuk organo. Katabolisme (Respirasi)Ditulis oleh Ameilia Siregar pada 11-10-2010 Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Penguraian suatu senyawa dapat menghasilkan energi. Energi kimia yang terdapat dalam senyawa tidak dapat digunakan secara langsung oleh sel. Energi akan diubah terlebih dahulu menjadi adenosin trifosfat (ATP) yang dapat digunakan oleh sel sebagai sumber energi terpakai. Energi itu digunakan untuk melangsungkan reaksi-reaksi kimia, pertumbuhan, transportasi, reproduksi, dan merespons rangsangan.Contoh katabolisme adalah proses pernafasan sel atau respirasi. Respirasi adalah proses penguraian bahan makanan yang menghasilkan energi. Respirasi dilakukan oleh semua sel penyusun makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria. Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan oksigen). makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria. Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan oksigen). 3.1.1. Respirasi Aerob Respirasi aerob merupakan serangkaian reaksi enzimatis yang mengubah glukosa secara sempurna menjadi CO2, H2O, dan menghasilkan energi sebesar 38 ATP. Pada pernapasan ini, pembebasan energi menggunakan oksigen bebas dari udara. Pada tumbuhan, oksigen yang dibutuhkan diperoleh dari udara melalui mulut daun dan lentisel. Zat organik terutama karbohidrat dipecahkan. Dalam respirasi aerob, glukosa dioksidasi oleh oksigen, dan reaksi kimianya dapat digambarkan sebagai berikut: mthri Dalam kenyataan, reaksi yang terjadi tidak sesederhana itu. Banyak tahapan reaksi yang terjadi dari awal hingga terbentuknya energi. Reaksi-reaksi itu dapat dibedakan menjadi tiga tahapan, yaitu: glikolisis, siklus Krebs, dan transpor elektron (lihat Gambar3.1)C6H12O6 + 6 H2O + 6 O2 —-> 6 CO2 + 12 H2O + 675 kal klorofil ![]() Gambar 3.1. Respirasi aerob (Campbell, 2006). 3.1.1.1. Glikolisis Glikolisis adalah serangkaian reaksi enzimatis yang memecah glukosa (terdiri dari 6 atom C) menjadi asam piruvat (terdiri dari 3 atom C). Reaksi ini melepaskan energi untuk menghasilkan ATP dan NADH2. Glikolisis terjadi di sitoplasma dan tidak memerlukan oksigen. Reaksinya adalah sebagai berikut: C6H12O6 —-> 2 asam piruvat + 2 ATP + 2 NADH + 2H+ Asam piruvat yang dihasilkan akan memasuki mitokondria untuk melakukan siklus Krebs. Namun sebelum memasuki siklus Krebs, asam piruvat (3C) ini diubah terlebih dahulu menjadi asetil koA (2C) di dalam matriks mitokondria melalui proses dekarboksilasi oksidatif. Senyawa selain glukosa, misalnya fruktosa, manosa, galaktosa, dan lemak dapat pula mengalami metabolisme melalui jalur glikolisis dengan bantuan enzim-enzim tertentu. 3.1.1.2. Siklus Krebs Siklus Krebs merupakan serangkaian reaksi metabolisme yang mengubah asetil koA yang direaksikan dengan asam oksaloasetat (4C) menjadi asam sitrat (6C). Selanjutnya asam oksaloasetat memasuki daur menjadi berbagai macam zat yang akhirnya akan membentuk oksaloasetat lagi. Pada siklus Krebs dihasilkan energi dalam bentuk ATP dan molekul pembawa hidrogen, yaitu : NADH dan FADH2. Hidrogen yang terdapat dalam NADH dan FADH2 tersebut akan dibawa ke sistem transpor elektron. Seluruh tahapan reaksi dalam siklus Krebs terjadi di dalam mitokondria. Dalam siklus ini, asetil koA dioksidasi secara sempurna menjadi CO2 3.1.1.3. Transpor Elektron Transpor elektron adalah serangkaian reaksi pemindahan elektron melalui proses reaksi redoks (reduksi-oksidasi). Hidrogen yang terdapat pada molekul NADH serta FADH2 ditranspor dalam serangkaian reaksi redoks yang melibatkan enzim, sitokrom, quinon, pirodoksin, dan flavoprotein. Pada akhir transport elektron, oksigen akan mengoksidasi elektron dan ion H menghasilkan air (H20). Transport elektron terjadi pada membran dalam mitokondria. 3.1.2. Respirasi anaerob Pernahkah kalian membuat atau melihat cara membuat tape ? Tape dibuat dari singkong yang dikukus lalu ditaburi dengan ragi. Jika setelah diberi ragi singkong tersebut dibiarkan dalam udara terbuka maka kalian tidak mendapatkan tape yang diinginkan, mengapa demikian ?Pembuatan tape merupakan salah satu contoh proses fermentasi yang menghasilkan alkohol. Fermentasi alkohol merupakan proses respirasi anaerob, yang tidak memerlukan oksigen. Oleh karena itu jika membuat tape, singkong yang telah ditaburi dengan ragi tersebut disimpan dalam ruang tertutup yang tidak atau sedikit mengandung udara. Misalnya setelah singkong beragi tersebut ditaruh dalam panci, kemudian panci tersebut dibungkus rapat dengan kain agar kondisinya menjadi anaerob. Respirasi anaerob merupakan serangkaian reaksi enzimatis yang memecah glukosa secara tidak sempurna karena kekurangan oksigen. Pada manusia, respirasi anaerob menghasilkan asam laktat sehingga menyebabkan rasa lelah, sedangkan pada tumbuhan, ragi, reaksi ini menghasilkan CO2 dan alkohol. Respirasi anaerob hanya menghasilkan sedikit energi, yaitu 2 ATP. ![]() Gambar 3.2 Respirasi anaerob menghasilkan:asam laktat (A) atau etanol (B). Respirasi anaerob, disebut fermentasi atau peragian. Pada umumnya respirasi ini terjadi pada tumbuhan, fungi dan bakteri. Proses fermentasi sering disebut sesuai dengan hasil akhir yang terbentuk. Misalnya: fermentasi alkohol bila hasil akhir fermentasiberupa alkohol. Menurut hasil samping yang terbentuk, maka fermentasi dibedakan atas: a. fermentasi alkohol pada ragi (khamir) dan bakteri anaerobik. b. fermentasi asam laktat pada umumnya di sel otot. c. fermentasi asam sitrat pada bakteri heterotrof. Bahan baku respirasi anaerobik pada peragian adalah glukosa, disamping itu juga terdapat fruktosa, galaktosa, dan manosa. Hasil akhirnya adalah alkohol, karbon dioksida, dan energi. Alkohol bersifat racun bagi sel-sel ragi. Sel-sel ragi hanya tahan terhadap alkohol pada kadar 9-18%. Lebih tinggi dari kadar tersebut, proses alkoholisasi (pembuatan alkohol) terhenti. Hal tersebut merupakan suatu kendala pada industri pembuatan alkohol. Oleh karena glukosa tidak terurai lengkap menjadi air dan karbon dioksida, maka energi yang dihasilkan lebih kecil dibandingk an respirasi aerobik. Pada respirasi aerobik dihasilkan 675kal, sedangkan pada respirasi anaerobik hanya dihasilkan 21 kal. seperti reaksi dibawah ini: C6H12O6 —–> 2 C2H5OH + 2 CO2 + 21 kal Sistem Metabolisme SelDitulis oleh Ameilia Siregar pada 10-10-2010 Standar KompetensiMengidentifikasi metabolisme dan enzim. Kompetensi Dasar 3.1. Katabolisme (Respirasi) 3.2. Anabolisme (Fotosintesis) 3.3. Klasifikasi enzim dan peranannya Tujuan Pembelajaran Setelah mempelajari Sistem Metabolisme Sel, kalian diharapkan dapat: • Mendeskripsikan proses katabolisme (respirasi) pada makhluk hidup • Mendeskripsikan proses anabolisme (fotosintesis) pada makhluk hidup. • Mengidentifikasi enzim dan peranannya. Kata-Kata Kunci Anabolisme Hiperparasit Autotrof Insectivor Asimilasi Katabolisme Biokatalisator Kemosintesis Enzim Metabolisme Fermentasi Parasit Fakultatif Fotosintesis Parasit Obligat Haustorium Respirasi Heterotrof Setiap makhluk hidup mengadakan pertukaran zat dengan lingkungannya, artinya makhluk hidup tidak hanya mengambil zat-zat tertentu dari lingkungannya, tetapi ia juga mengembalikan zat-zat tertentu kedalam lingkungannya. Inilah yang disebut proses metabolisme. Metabolisme adalah reaksi kimia untuk pembentukkan dan perombakan bahan organik. Metabolisme dibedakan ke dalam anabolisme dan katabolisme. 1. Anabolisme, yaitu pembentukan senyawa-senyawa kompleks dari senyawa sederhana. Proses ini memerlukan energi. 2. Katabolisme, yaitu penguraian senyawa kompleks menjadi senyawa-senyawa sederhana. Proses ini menghasilkan energi. Energi ini dapat digunakan oleh makhluk hidup untuk berbagai kegiatan. Makhluk hidup memerlukan materi dan energi untuk pertumbuhannya. Materi diperoleh dari tanah, air, dan udara. Energi diperoleh dari matahari, reaksi kimia, atau dari makanan. Berdasarkan cara mendapatkan materi dan energi, setiap makhluk hidup dibedakan menjadi 4 kelompok, yaitu: 1. fotoautotrof (mensintesis makanan sendiri dengan menggunakan energi cahaya matahari melalui proses fotosintesis). Contoh: tumbuhan, dan makhluk hidup berklorofil lainnya. 2. kemoautotrof (mensintesis makanan sendiri dengan menggunakan energi dari reaksi kimia). Contohnya: bakteri Nitrosomonas, bakteri sulfur, dan bakteri besi). 3. fotoheterotrof (mengubah zat organik dengan bantuan energi matahari dijadikan makanannya. Contohnya: bakteri purple/ungu. 4. kemoheterotrof (mengubah zat organik dengan bantuan energi dari reaksi kimia. Makhluk hidup autotrof dapat mensintesis makanannya sendiri, sedangkan makhluk hidup heterotrof tidak dapat mensintesis makanannya sendiri. Untuk membangun tubuh maupun sebagai sumber energinya, makhluk hidup heterotrof mengambil zat-zat organik dari lingkungannya. Jadi makhluk hidup yang tidak dapat membuat makanannya sendiri, secara langsung atau tidak langsung, hidupnya bergantung pada makhluk lain. Berdasarkan cara hidupnya, makhluk hidup heterotrof dapat dibedakan menjadi dua kelompok, yaitu: 1. Saprofit, yaitu makhluk hidup yang hidupnya bergantung pada sisa-sisa makhluk hidup lainnya yaitu dengan menguraikannya sehingga disebut juga makhluk hidup pengurai. Jenis tumbuhan ini menggunakan energi yang tersimpan dalam sisa-sisa makhluk hidup yang telah mati tersebut. Contoh sebagian besar jamur dan bakteri. 2. Simbion, yaitu makhluk hidup yang hidup bersama dengan makhluk hidup yang lain. a. Simbion helotisme = simbion parasitisme, kedua simbion hidup bersama, yang satu (inang) dirugikan dan yang lain (parasit) mendapatkan keuntungan. b. Simbion mutualisme, kedua simbion yang hidup bersama ini mendapat keuntungan. Contoh : bakteri Rhizobium yang hidup pada bintil akar tumbuhan kacang-kacangan (legum) c. Simbion komensalisme, dalam hidup bersama ini, makhluk hidup yang satu mendapatkan keuntungan, sedang makhluk hidup yang lain tidak mendapat rugi maupun untung. Parasit adalah makhluk hidup yang sebagian besar atau seluruh kebutuhan hidupnya bergantung pada makhluk lain yang ditumpanginya (inang). 1. Berdasarkan cara hidupnya, parasit dapat dibedakan atas: a. Parasit obligat, yaitu makhluk hidup yang hanya dapat hidup sebagai parasit saja, hidupnya bergantung sekali pada inang. Contoh tali putri (Cassytha filiformis). b. Parasit fakultatif, yaitu makhluk hidup yang hidupnya tidak hanya sebagai parasit, tetapi juga dapat hidup sebagai saprofit. Contoh: Phytophthora parasitica pada tembakau dan tomat. 2. Berdasarkan kebutuhan makanannya, parasit dibagi atas: a. Parasit sejati, parasit yang seluruh kebutuhannya diambil dari inangnya. Contoh: tali putri, tumbuhan ini mengisap makanannya dari inangnya dengan akar isap (haustorium). b. Semi atau parasit (parasit setengah), yaitu parasit yang sebagian dari kebutuhan makanannya diambil dari inangnya. Contoh: Benalu. c. Hiper parasit, yaitu parasit yang hidup pada parasit lainnya. Contoh: Vicum sp. tumbuh pada benalu. Tubuh makhluk hidup disusun oleh materi. Materi diperoleh dari udara (misalnya oksigen untuk pernafasan, karbon dioksida untuk fotosintesis), air dan bahan-bahan yang terlarut, atau dari makanan. Nutrien adalah zat hara yang dibutuhkan setiap makhluk hidup untuk keperluan penyusun tubuhnya. Setiap makhluk hidup membutuhkan nutrien organik maupun nutrien anorganik. Lingkungan abiotik hanya menyediakan nutrient anorganik saja. Nutrient organik dapat dibuat dari nutrient anorganik bagi makhluk hidup autotrof. Prosesnya disebut asimilasi. Asimilasi dapat secara fotosintesis (asimilasi karbon) maupun secara kemosintesis (asimilasi nitrogen). Beberapa tumbuhan yang hidup di tempat gersang, kekurangan memperoleh nutrien tertentu. Pernahkah kalian melihat kantong semar (Nephentes). Dinamakan kantong semar karena sebagian dari daun ada yang mengalami modifikasi membentuk piala (berbentuk seperti kantung). Tahukah kalian, apa fungsi kantong tersebut? Kantong ini berfungsi sebagai perangkap serangga. Serangga yang terperangkap akan menempel di dalamnya dan akhirnya mati. Serangga ini akan dicerna dan menghasilkan nutrisi bagi tumbuhan tersebut, terutama nitrogen, yang umumnya sedikit dijumpai di daerah gersang. Oleh karena itu, tumbuhan ini disebut juga insektivora ,yang artinya pemakan serangga. Tumbuhan pemakan serangga ini juga melakukan asimilasi karbon (C). Tubuh tumbuhan disusun oleh berbagai macam zat. Cara untuk mengetahui unsur-unsur yang terdapat dalam tubuh tumbuhtumbuhan adalah dengan analisis kimia melalui kultur air atau kultur pasir. Tujuan dilakukan kedua kultur tersebut adalah: a. Untuk mengetahui unsur-unsur yang diperlukan b. Untuk mengetahui bentuk dan asal unsur-unsur tersebut diambil oleh tumbuh-tumbuhan. Cara lain untuk mengetahui unsur-unsur penyusun tubuh tumbuhan adalah dengan Analisis Abu. Tumbuhan yang dianalisis dikeringkan sampai 110ºC untuk mengetahui bobot keringnya, kemudian dibakar serta diperiksa kadar abu serta gas-gas yang keluar, untuk menunjukkan adanya berbagai macam unsur yang menyusun tubuh tumbuhan. Unsur-unsur ini dapat dibedakan atas tiga golongan, yaitu: 1. Unsur- unsur makro, yaitu unsur-unsur yang selalu terdapat pada tubuh tumbuhan dalam jumlah banyak dan harus ada di tubuh tanaman. Unsur-unsur makro terdiri dari: C, H, O, N, S, P, Ca, K, Mg, Fe. Unsur-unsur ini dikenal juga sebagai penyusun tubuh tumbuhan sehingga disebut unsur-unsur klasik atau unsur-unsur Sachs, sesuai dengan nama penemunya. 2. Unsur-unsur mikro, yaitu unsur yang mutlak diperlukan oleh tumbuhan, tetapi jumlahnya sangat kecil. Dalam jumlah banyak unsur ini dapat menyebabkan keracunan. Unsur-unsurnya adalah: Cl, Zn, B, Mo, Mn, dan Cu. 3. Unsur-unsur tambahan, yaitu unsur yang hanya terdapat pada tumbuhan tertentu, kadang-kadang dalam persentasi yang cukup tinggi misalnya, Na, Al, Cl, dan Si. Fungsi unsur-unsur tersebut untuk tumbuh-tumbuhan: C-H-O: Pembentuk karbohidrat, protein, lemak, asam nukleat (DNA dan RNA), serta senyawa organik lainnya. N : Pembentuk protein, dan asam nukleat P : Pembentuk asam nukleat, ATP, ADP S : Pembentuk protein. K : Pembentuk enzim. Ca : Pembentuk dinding sel. Mg : Pembentuk klorofil. Fe : Sebagai katalisator. Semua unsur-unsur yang diperlukan diambil dari dalam tanah oleh akar dalam bentuk larutan garam mineral, kecuali CO 2 (untuk berfotosintesis) dan O 2 (untuk berespirasi) yang diambil dari udara dalam bentuk gas. Karbondioksida masuk melalui ke dalam tubuh tumbuhan melalui mulut daun (stoma) dan lentisel. Dahulu dianggap bahwa semua zat yang diperlukan tumbuhan diambil dari humus yang terdapat di dalam tanah. Pendapat itu dikenal dengan teori humus. Menurut hasil penelitian para ahli, tumbuhan mengambil zat-zat dari lingkungannya. Sekarang timbul pertanyaan zat-zat apakah yang diambil dari tanah, dan zat-zat apa yang berasal dari udara? Bagaimanakah cara mengetahui bahwa zat-zat tertentu mutlak diperlukan oleh tumbuhan sedangkan zat-zat lainnya tidak begitu dibutuhkan tumbuhan? Dengan menjalankan percobaan menggunakan kultur air atau kultur pasir yang diberi zat makanan, pertanyaan diatas dapat dijawab sebagai berikut. Unsur C diambil dari udara dalam bentuk CO2. Hal ini dapat dibuktikan dengan percobaan mengalirkan udara tanpa CO2 kepada tumbuhan, ternyata pertumbuhannya berhenti. Unsur-unsur selain C yang diperlukan tumbuhan diambil dalam bentuk zat anorganik berupa ion-ion garam. Baik dalam bentuk anion maupun kation dalam larutan. Dengan mengurangi zat-zat makanan dalam larutan secara bergantian, maka diketahui ada zat mutlak diperlukan (sebagai unsur esensial) dan ada yang tidak (non esensial). Bila zat yang mutlak diperlukan tidak diberikan, tumbuhan akan memperlihatkan gejala sakit (kekurangan unsur), yang disebutdefisiensi. Selanjutnya d apat kita lihat fungsi unsur-unsur di atas dan gejala defisiensi yang muncul jika kekurangan unsur tersebut dialami oleh suatu tumbuhan. Unsur-unsur C, H, O. Unsur-unsur ini mempunyai peranan dalam proses fotosintesis (asimilasi karbon) yang diambil dalam bentuk CO2 dari udara, dan H2O dari dalam tanah. Kekurangan air berakibat fatal pada tumbuhan, yaitu menyebabkan tumbuhan menjadi layu, kering dan mati. Nitrogen (N). Unsur ini terutama dibutuhkan untuk membentuk protein bersama-sama dengan unsur C, H, O. Protein banyak dibutuhkan pada bagian yang sedang tumbuh sehingga penting sekali untuk pertumbuhan vegetatif. Gejala kekurangan unsur N, terutama pada daun tua, adalah warna daun menjadi hijau muda dan akhirnya kuning, tanaman menjadi kerdil, buah tak sempurna, kecil-kecil dan lekas masak. Fosfor (P). Unsur ini terutama dibutuhkan untuk pembentukan bunga dan buah, yakni pada bagian-bagian tanaman yang sedang dalam pertumbuhan, jika kekurangan unsur P, pada daun tua terlihat gejala antara lain warna daun hijau tua, atau lebih tua daripada biasanya, tanaman kerdil, pembentukan buah jelek, menurunkan hasil biji. Kalium (K). Unsur ini bersifat bergerak (mobil). Peranannya adalah memperlancar pertukaran zat, proses asimilasi, dan memperkuat serabut-serabut, sehingga secara langsung memperkuat tubuh tumbuhan itu. Defisiensi unsur ini memperlihatkan gejala pada daun tuanya, daun mula-mula berkerut, ujung daun tepinya pucat (klorosis), kadang-kadang gugur dan buahnya lekas gugur, umbinya berkurang, dan batangnya juga lemah. Sulfur (S). Unsur ini perlu untuk membentuk protein bersama unsur C, H, O, dan N. Selain itu, unsur ini untuk mmembentuk vitamin B1, juga penting untuk ketahanan dan pertumbuhan. Defisiensi unsur ini pada daun muda terlihat warnanya menjadi hijau muda, kadangkadang tidak merata sehingga menjadi kekuning-kuningan. Magnesium (Mg). Unsur ini digunakan untuk membentuk klorofil. Defisiensi Mg terjadi pada daun tua, memperlihatkan gejala klorosis pada tulang-tulang daun dan akhirnya menjadi kuning dan lemah. Kalsium (Ca). Unsur ini banyak terdapat pada daun dan batang, tetapi kurang pada biji. Unsur ini berguna mengatur permeablitas dinding sel. Kalau ion K mempertinggi permeabilitas dinding sel, maka ion Ca sebaliknya. Hal ini mencegah terlalu banyaknya pengisapan air agar struktur koloid sitoplasma tidak menjadi rusak. Defisiensi Ca terjadi pada daun muda, terlihat gejala klorosis pada ujung dan tepi daun, kemudian ke tulang daun dan pucuk. Selain itu kuncupnya akan mati, dan perakaran kurang sekali. Ferum atau besi (Fe). Unsur ini merupakan katalisator pada pembentukan hijau daun. Selain itu berfungsi untuk pembentukan enzim-enzim pernapasan yang mengoksidasikan karbohidrat menjadi CO2 dan H2 O. Defisiensi Fe pada tanaman muda memperlihatkan klorosis diantara tulang-tulang daun dari daun muda dan kemudian menjadi kuning. Mangan (Mn). Unsur ini penting untuk pembentukan hijau daun dan enzim-enzim pernapasan. Defisiensinya menyebabkan daun muda mengalami klorosis di antara tulang-tulang daun, sedangkan tulang daunnya sendiri tidak. Boron (B). Unsur ini berguna dalam pertumbuhan jaringan. Defisiensinya menyebabkan pertumbuhan meristem berkas pembuluh angkut terganggu. Kuncup dan pucuknya mati dan daun mengalami klorosis di tepinya. Cuprum atau tembaga (Cu). Unsur ini penting dalam mereduksi nitrat. Defisiensinya mengakibatkan pertumbuhan terganggu dan bila terlalu banyak akan menjadi racun. Rangkuman Bab Penelitian BiologiDitulis oleh Ameilia Siregar pada 07-10-2010 Biologi merupakan ilmu murni. Biologi adalah ilmu yang mempelajari segala sesuatu yang menyangkut makhluk hidup. Pelaksanaan suatu penelitian tidak pernah lepas dari langkah-langkah yang mendukung hasil penelitian. Langkah-langkah penelitian disebut metode ilmiah, terdiri atas: identifikasi masalah, observasi atau pengumpulan data informasi, menyusun hipotesis (jawaban sementara), perencanaan percobaan berdasarkan hasil observasi,pengumpulan data dan analisis. Selanjutnya tahap terakhir adalah kesimpulan. Sikap ilmiah dalam kinerja ilmiah bermanfaat untuk menentukan konsep-konsep biologi. Sikap ilmiah yang harus dimiliki oleh seorang biologiwan antara lain jujur, memiliki rasa ingin tahu, sesuai dengan fakta, berani dan santun, dan dalam melakukan penelitian harus tekun agar hasil yang diperoleh maksimal. Objek tingkat organisasi dan persoalan/tema yang dipelajari dalam biologi mulai dari tingkat kecil berupa susunan molekul dan sel sampai tingkat tertinggi yaitu bioma. Klasifikasi adalah suatu cara mengelompokkan segala sesuatu (objek, organisme, dan lain-lain) berdasarkan aturan tertentu. Tahap klasifikasi, yaitu pencandraan (identifikasi), pengelompokan, dan pemberian nama. Tujuan klasifikasi adalah menyederhanakan objek (penelitian). Sistem klasifikasi berdasarkan pendekatannya dibedakan menjadi sistem alami, sistem buatan dan sistem filogenik. Klasifikasi menurut Carolus Linnaeus menggunakan sistem peralihan alami > buatan. Dalam klasifikasi ini, Linnaeus menyertakan tatacara dalam pengelompokan dengan aturan pemberian tata nama ganda yang dikenal sebagai Binomial Nomenklatur. Setiap satu spesies memiliki satu nama untuk tiap tingkatan takson. Urutan takson dari tingkat rendah sampai yang tinggi adalah spesies (jenis), genus (marga), familia(suku), ordo(bangsa), kelas, divisi/filum, kingdom(dunia) dan domain. Rangkuman (Struktur dan Fungsi Sel)Ditulis oleh Ameilia Siregar pada 06-10-2010 Sel pertama sekali ditemukan Ilmuwan Inggris, Robert Hooke (1665) dengan meneliti sayatan gabus di bawah mikroskop yang terdiri dari ruangan-ruangan yang dibatasi oleh dinding disebut sel. Pada tahun 1839, seorang biolog Perancis, Felix Durjadin menemukan isi penyusun dalam rongga sel disebut sarcode. Johanes Purkinje (1789-1869) mengadakan perubahan nama sarcode menjadi protoplasma.Theodore Schwann (1801-1881), seorang pakar zoologi Jerman dan Mathias Schleiden (1804-1881), pakar botani Jerman mengemukakan bahwa tubuh hewan dan tumbuhan terdiri atas sel-sel. Robert Brown (1831), seorang biolog Skotlandia menemukan inti (nukleus). Max Schultze (1825-1874), seorang pakar anatomi mengemukakan protoplasma merupakan dasar fisik kehidupan. Rudolf Virchow mengatakan sel berasal dari sel “Omnis Cellula Cellula”. Sel dibedakan atas beberapa bentuk, diantaranya berdasarkan keadaan inti sel (sel eukariotik dan prokariotik), berdasarkan keadaan kromosom dan fungsinya (sel somatik dan reproduktif), berdasarkan sifatnya (bagian hidup dan bagian yang mati). Sel tumbuhan terdiri atas: dinding sel, membran plasma, sitoplasma, dan organel-organel (retikulum endoplasma kasar dan halus, ribosom, mitokondria, apartus golgi, plastida, vakuola sentral dan nukleus). Sedangkan sel hewan terdiri atas membran sel, sitoplasma dan organel-organel (retikulum endoplasma kasar dan halus, ribosom, mitokondria, lisosom, aparatus golgi, vakuola, dan nukleus). Perbedaan sel tumbuhan dan sel hewan adalah sel tumbuhan bentuknya tetap, terdiri dari dinding sel yang mengandung selulosa, terdapat butir plastida, dan vakuola sentral yang besar, tidak ada lisosom dan sentriol. Sedangkan sel hewan bentuknya bervariasi, tidak ada butir plastida, vakuola kecil, terdapat lisosom dan sentriol. Ciri-Ciri Makhluk HidupDitulis oleh Ameilia Siregar pada 05-10-2010 Selain ada perbedaan, antara hewan dan tumbuhan juga mempunyai banyak persamaan yang merupakan ciri makhluk hidup. Ciri-ciri makhluk hidup antara lain: memerlukan makanan (nutrisi), bernafas (respirasi), ekskresi, sintesis, tumbuh dan berkembang, regulasi, reproduksi, iritabilitas, adaptasi, interaksi dengan lingkungan, serta bentuk dan ukuran tertentu, terdiri dari sel.a. Nutrisi Makhluk hidup memerlukan makanan dan memilih jenis makanan yang sesuai dengan kondisi tubuhnya. Makanan tersebut akan mengalami proses pemecahan secara enzimatis untuk mendapatkan energi dalam melakukan aktivitas, penyusun sel-sel, dan mengganti bagian yang rusak. Makanan yang diperlukan untuk melaksanakan aktivitas hidup disebut nutrisi. b. Respirasi Respirasi atau pernafasan adalah proses penyederhanaan senyawa kimia dari zat makanan untuk mendapatkan energi. Pernafasan dapat terjadi secara: * Aerob (memerlukan oksigen) * Anaerob (tidak menggunakan oksigen, melalui proses fermentasi). c. Ekskresi Pengeluaran senyawa-senyawa kimia sisa metabolisme yang tidak berguna bagi tubuh makhluk hidup, dan bila terdapat dalam tubuh akan bersifat toksik (meracuni). d. Sintesis Dalam tubuh terjadi perubahan dari suatu senyawa ke senyawa lain untuk kepentingan penyusun tubuh, memelihara kelangsungan hidup, dan mempertahankan tubuh dalam berinteraksi dengan lingkungan. Penyusunan senyawa kimia dalam tubuh untuk aktivitas hidup dinamakan sintesis. e. Pertumbuhan dan perkembangan Pertumbuhan merupakan proses bertambahnya volume dan jumlah sel serta jumlah senyawa kimia dalam tubuh yang bersifat irreversible (tidak kembali ke asal) pada jangka waktu tertentu. Perkembangan adalah pertumbuhan yang diikuti dengan berubah sifat menuju kedewasaan. Sedangkan diferensiasi adalah pertumbuhan sel diikuti dengan spesialisasi (fungsi khusus) sel. f. Regulasi Pengaturan baik secara kuantitas maupun kualitas pada setiap saat terhadap sruktur suatu sistem metabolisme dalam makhluk hidup disebut dengan regulasi. g. Iritabilitas Iritabilitas dimaksudkan sebagai kemampuan makhluk hidup menerima rangsang dan sanggup mengadakan respons terhadap rangsangan tersebut. h. Reproduksi Proses bertambahnya jumlah individu yang berperan untuk kelestarian keturunannya disebut reproduksi. i. Adaptasi Penyesuaian diri dengan keadaan lingkungan pada waktu yang relatif pendek disebut toleransi, sedangkan toleransi yang berlangsung dalam waktu yang relatif panjang disebut adaptasi. j. Interaksi Untuk menjaga stabilitas hidupnya atau mempertahankan hidupnya makhluk hidup harus bersaing dengan individu lain. Persaingan terjadi dalam mendapatkan tempat hidup, makanan, cahaya dan lainnya. k. Makhluk hidup memiliki bentuk dan ukuran tertentu, dan terdiri dari sel Makhluk hidup sangat bervariasi baik jenis maupun bentuk serta ukurannya, tetapi setiap jenis menunjukkan bentuk yang spesifik serta ukuran tertentu pula. Variasi dalam satu jenis tidak dapat menghilangkan bentuk spesifiknya. Makhluk hidup memiliki kesamaan yaitu tersusun oleh sel. Perbedaan Sel Tumbuhan dan Sel HewanDitulis oleh Ameilia Siregar pada 04-10-2010 Data observasi dengan menggunakan mikroskop cahaya pada sediaan sel daun tumbuhan (Elodea sp) dan sel epitel pipi manusia diperoleh hasil sesuai Tabel 2.2.Tabel 2.2. Perbandingan sel Elodea dan sel epitel pipi
Jika kalian amati secara cermat, kloroplas, dan inti sel Elode terletak di pinggir dekat ke dinding sel. Hal ini disebabkan dibagian tengah dari sel tumbuhan terdapat adanya vakuola besar yang terletak di tengah-tengah sel (disebut vakuola sentral), sedangkan pada sel hewan tidak teramati adanya vakuola sentral, karena ukuran vakuolanya kecil. Karena sel hewan tidak mempunyai kloroplas (plastid) maka tidak dapat melakukan fotosintesis sehingga energi yang diperolehnya bukan dari cahaya matahari, tetapi berasal dari makanan. Dalam sel hewan, organel yang disebut lisosom (karena ukurannya kecil maka tidak dapat diamati dengan mikroskop cahaya) berfungsi mencerna makanan yang diabsorbsi oleh sel. Organel ini tidak dijumpai pada sel tumbuhan. Apabila kita mengamati reproduksi seksual pada sel hewan dan sel tumbuhan maka pada saat proses pembelahan sel terdapat adanya sentriol dekat inti sel hewan. Organel ini umumnya tidak terdapat pada sel tumbuhan. Gamet jantan pada hewan mempunyai flagel, sedangkan pada pada tumbuhan tingkat tinggi tidak berflagel. Berdasarkan pengamatan dan keterangan tersebut, kita dapat menyebutkan perbedaan antara sel tumbuhan dan sel hewan, Perbedaan kedua makhluk hidup tersebut dapat dilihat pada Tabel 2.3. Tabel 2.3. Perbedaan sel tumbuhan dan sel hewan
|