Selasa, 01 November 2011

Kimia Industri

Membersihkan Peralatan Laboratorium

Ditulis oleh Suparni Setyowati Rahayu pada 23-09-2009
Kebersihan peralatan laboratorium, baik yang berupa peralatan gelas atau non gelas seperti bejana polyethylene, polypropylene dan teflon, merupakan bagian yang sangat mendasar dalam kegiatan laboratorium dan merupakan elemen penting dalam program jaminan mutu.
Perhatian kepada kebersihan barang-barang tersebut harus ditingkatkan dan harus proporsional dengan tingkat kepentingan pengujian, akurasi pengukuran yang diperlukan dan menurunnya konsentrasi analit yang akan ditentukan.
Setiap laboratorium harus menetapkan prosedur yang memadai untuk membersihkan peralatan gelas dan non gelas yang digunakan dalam berbagai macam pengujian. Apabila metodologi pengujian tertentu mensyaratkan prosedur membersihkan secara spesifik, maka prosedur tersebut harus diikuti.

Cara Membersihkan Peralatan Laboratorium Secara Umum

Proses membersihkan harus dilakukan segera setelah peralatan digunakan. Membuang bahan berbahaya dan pembersihan bahan korosif sebelum peralatan tersebut dibersihkan. Peralatan cuci manual atau otomatis harus menggunakan deterjen yang sesuai dengan kegunaannya.
Residu organik memerlukan perlakuan dengan larutan pembersih asam kromat. Peralatan harus dikeringkan dan disimpan dalam kondisi yang tidak memungkinkan terjadinya kontaminasi oleh debu atau bahan lain.

Cara Membersihkan Timbangan

Kebersihan timbangan harus dicek setiap kali selesai digunakan, bagian dan menimbang harus dibersihkan dengan menggunakan sikat, kain halus atau kertas (tissue) dan membersihkan timbangan secara keseluruhan timbangan harus 392 dimatikan, kemudian piringan (pan) timbangan dapat diangkat dan seluruh timbangan dapat dibersihkan dengan menggunakan pembersih seperti deterjen yang lunak, campurkan air dan etanol/alkohol. Sesudah dibersihkan timbangan dihidupkan dan setelah dipanaskan, cek kembali dengan menggunakan anak timbangan.

Cara Membersihkan dan Merawat Penangas Air (Water Bath) Thermostat

Perawatan secara reguler oleh Jasa Layanan pelanggan tidak diperlukan. Pembersihan yang dibutuhkan pada perawatan (seperti membersihkan sudu-sudu / baling-baling roda yang berputar) dilakukan oleh Operator laboratorium sesuai dengan petunjuk pabrik.

Media pemanas dan Alat

Bahan Bakar Pabrik

Ditulis oleh Suparni Setyowati Rahayu pada 22-09-2009
Bahan bakar diartikan sebagai bahan yang apabila dibakar dapat meneruskan proses pembakaran tersebut dengan sendirinya, disertai dengan pengeluaran kalor. Bahan bakar dapat berbentuk bahan padat, cair, atau gas yang dapat bereaksi dengan oksigen (udara) secara eksoterm. Panas dari reaksi eksoterm tersebut dapat langsung digunakan untuk pemanasan atau sering juga diubah dulu menjadi bentuk energi lain (biasanya menjadi uap).
Besaran yang penting pada bahan bakar ialah panas rendah” (lower calorific value), yang menyatakan banyaknya panas yang umumnya diperoleh pada pembakaran dalam keadaan normal. Besaran ini dinyatakan dalarn satuan kkal/kg, kJ/kg, kkal/ml atau kJ/mI. Makin halus ukuran bahan bakar, makin cepat bahan tersebut terbakar dan makin mudah penakaran dan pengaturan dilakukan. Di samping itu, kelebihan udara yang diperlukan untuk pembakaran lebih kecil.
ini berarti temperatur menjadi lebih tinggi. Sebagai contoh penggunan kalor dari proses pembakaran secara langsung adalah : untuk memasak di dapur-dapur rumah tangga, instalasi pemanas, sedang contoh penggunaan kalor secara tidak langsung adalah : kalor diubah menjadi nergi mekanik, misalnya pada motor bakar ; kalor diubah menjadi energi listrik, misalnya pada pembangkit listrik tenaga diesel ; tenaga gas dan tenaga uap.

Pembakaran

Pembakaran adalah reaksi kimia yang cepat antara oksigen dan bahan yang dapat terbakar, disertai timbulnya cahaya dan menghasilkan kalor. Pembakaran spontan adalah pembakaran dimana bahan mengalami oksidasi perlahanlahan sehingga kalor yang dihasilkan tidak dilepaskan, akan tetapi dipakai untuk menaikkan suhu bahan secara pelan-pelan sampai mencapai suhu nyala.
Pembakaran sempurna adalah pembakaran dimana semua konstituen yang dapat terbakar di dalam bahan bakar membentuk gas CO2, air (= H2O), dan gas SO2, sehingga tak ada lagi bahan yang dapat terbakar tersisa.

Macam-macam Bahan Bakar

  1. Bahan bakar fosil, seperti: batubara, minyak bumi, dan gas bumi.
  2. Bahan bakar nuklir, seperti: uranium dan plutonium. Pada bahan bakar nuklir, kalor diperoleh dari hasil reaksi rantai
  3. Bahan bakar lain, seperti: sisa tumbuh-tumbuhan, minyak nabati, minyak hewani.

    Jenis Kompresor

    Ditulis oleh Suparni Setyowati Rahayu pada 21-09-2009
    Pada jenis positive-displacement,sejumlah udara atau gas di- trap dalam ruang kompresi dan volumnya secara mekanik menurun, menyebabkan peningkatan tekanan tertentu kemudian dialirkan keluar. Pada kecepatan konstan, aliran udara tetap konstan dengan variasi pada tekanan pengeluaran.
    Kompresor dinamik memberikan enegi kecepatan untuk aliran udara atau gas yang kontinyu menggunakan impeller yang berputar pada kecepatan yang sangat tinggi. Energi kecepatan berubah menjadi energi tekanan karena pengaruh impeller dan volute pengeluaran atau diffusers. Pada kompresor jenis dinamik sentrifugal, bentuk dari sudu-sudu impeller menentukan hubungan antara aliran udara dan tekanan (atau head) yang dibangkitkan.

    Kompresor reciprocating

    Di dalam industri, kompresor reciprocating paling banyak digunakan untuk mengkompresi baik udara maupun refrigerant.Prinsip kerjanya seperti pompa sepeda dengan karakteristik dimana aliran keluar tetap hampir konstan pada kisaran tekanan pengeluaran tertentu. Juga, kapasitas kompresor proporsional langsung terhadap kecepatan. Keluarannya,seperti denyutan.
    Kompresor reciprocating tersedia dalam berbagai konfigurasi; terdapat empat jenis yang paling banyak digunakan yaitu horizontal, vertical, horizontal balanceopposed,dan tandem. Jenis kompresor reciprocating vertical digunakan untuk kapasitas antara 50 – 150 cfm. Kompresor horisontal balance opposed digunakan pada kapasitas antara 200 – 5000 cfm untuk desain multitahap dan sampai 10,000 cfm untuk desain satu tahap (Dewan Produktivitas Nasional,1993).
    Kompresor udara reciprocating biasanya merupakan aksi tunggal dimana penekanan dilakukan hanya menggunakan satu sisi dari piston. Kompresor yang bekerja menggunakan dua sisi piston disebut sebagai aksi ganda.Sebuah kompresor dianggap sebagai kompresor satu tahap
    jika keseluruhan penekanan dilakukan menggunakan satu silinder atau beberapa silinder yang parallel.
    Beberapa penerapan dilakukan pada kondisi kompresi satu tahap. Rasio
    kompresi yang terlalu besar (tekanan keluar absolut/tekanan masuk absolut) dapat menyebabkan suhu pengeluaran yang berlebihan ataumasalah desain lainnya. Mesin dua tahap yang digunakan untuk tekanan tinggi biasanya mempunyai suhu pengeluaran yang lebih rendah (140 to 160oC), sedangkan pada mesin satu tahap suhu lebih tinggi (205 to 240oC).
    gb5-14

    Kompresor Dinamis

    Kompresor udara sentrifugal (lihat Gambar 5-16)merupakan kompresor dinamis, yang tergantung pada transfer energi dari impeller berputar ke udara. Rotor melakukan pekerjaan ini dengan mengubah momen dan tekanan udara. Momen ini dirubah menjadi tekanan tertentu dengan penurunan udara secara perlahan dalam difuser statis.
    Kompresor udara sentrifugal adalah kompresor yang dirancang bebas minyak pelumas. Gir yang dilumasi minyak pelumas terletak terpisah dari udara dengan pemisah yang menggunakan sil pada poros dan ventilasi atmosferis. Sentrifugal merupakan kompresor yang bekerja kontinyu, dengan sedikit bagian yang bergerak; lebih sesuai digunakan pada volum yang besar dimana dibutuhkan bebas minyak pada
    udaranya.
    Kompresor udara sentrifugal menggunakan pendingin air dan dapat berbentuk paket; khususnya paket yang termasuk aftercooler dan semua control. Kompresor ini dikenal berbeda karakteristiknya jika dibandingkan dengan mesin reciprocating.Perubahan kecil pada rasio kompresi menghasilkan perubahan besar pada hasil kompresi dan efisiensinya. Mesin sentrifugal lebih sesuai diterapkan untuk kapasitas besar diatas 12,000 cfm.

    Sistem Utilitas Udara Tekan

    Ditulis oleh Suparni Setyowati Rahayu pada 20-09-2009
    Plant industri menggunakan udara tekan untuk seluruh operasi produksinya, yang dihasilkan oleh unit udara tekan yang berkisar dari 5 horsepower (hp) sampai lebih 50.000 hp. DepartemenEnergi 364 Amerika Serikat (2003) melaporkan bahwa 70 sampai 90 persen udara tekan hilang dalam bentuk panas yang tidak dapat digunakan,gesekan, salah penggunaan dan kebisingan. Sehingga, kompresor dan sistim udara tekan menjadi area penting untuk meningkatkan efisiensi energi pada plant industri.
    Merupakan catatan yang berharga bahwa biaya untuk menjalankan sistim udara tekan jauh lebih tinggi daripada harga kompresor itu sendiri (lihat Gambar 5-11).Penghematan energi dari perbaikan sistim dapat berkisar dari 20 sampai 50 persen atau lebih dari pemakaian listrik, menghasilkan ribuan bahkan ratusan ribu dolar. Sistim udara tekan yang dikelola dengan benar dapat menghemat energi, mengurangi perawatan, menurunkan waktu penghentian operasi, meningkatkan produksi, dan meningkatkan kualitas.
    Sistim udara tekan terdiri dari bagian pemasokan, yang terdiri dari kompesor dan perlakuan udara, dan bagian permintaan, yang terdiri dari sistim distribusi & penyimpanan dan peralatan pemakai akhir. Bagian pemasokan yang dikelola dengan benar akan menghasilkan udara bersih, kering, stabil yang dikirimkan pada tekanan yang dibutuhkan dengan biaya yang efektif.
    Bagian permintaan yang dikelola dengan benar akan meminimalkan udara 365 terbuang dan penggunaan udara tekan untuk penerapan yang tepat.Perbaikan dan pencapaian puncak kinerja sistim udara tekan memerlukan bagian sistim pemasokan dan permintaan dan interaksi diantara keduanya.

    Komponen Utama Sistim Udara Tekan

    Sistim udara tekan terdiri dari komponen utama berikut: Penyaring udara masuk, pendingin antar tahap, after-coolers,pengering udara, traps pengeluaran kadar air, penerima, jaringan pemipaan, penyaring, pengatur dan pelumasan (lihat Gambar 5-12).
  4. Filter Udara Masuk: Mencegah debu masuk kompresor; Debu menyebabkan lengketnya katup/ kran, merusak silinder dan pemakaian yang berlebihan.
  5. Pendingin antar tahap: Menurunan suhu udara sebelum masuk ke tahap berikutnya untuk mengurangi kerja kompresi dan meningkatkan efisiensi. Biasanya digunakan pendingin air.
  6. After-Coolers: Tujuannya adalah membuang kadar air dalam udara dengan penurunan suhu dalam penukar panas berpendingin air.
  7. Pengering Udara: Sisa-sisa kadar air setelah after-cooler dihilangkan dengan menggunakan pengering udara, karena udara tekan untuk keperluan instrumen dan peralatan pneumatik harus bebas dari kadar air. Kadar air dihilangkan dengan menggunakan adsorben seperti gel silika/karbon aktif, atau pengering refrigeran, atau panas dari pengering kompresor itu sendiri.
  8. Traps Pengeluaran Kadar Air: Trap pengeluaran kadar air diguakan untuk membuang kadar air dalam udara tekan. Trap tersebut menyerupai steam traps. Berbagai jenis trap yang digunakan adalah kran pengeluaran manual, klep pengeluaran otomatis atau yang berdasarkan waktu dan lainnya.
  9. Penerima: Penerima udara disediakan sebagai penyimpan dan penghalus denyut keluaran udara – mengurangi variasi tekanan dari kompresor

Perawatan Boiler dan Pemanas Fluida Termis

Ditulis oleh Suparni Setyowati Rahayu pada 19-09-2009
Tugas dan pemeriksaan berkala pada bagian luar boiler. Seluruh pintu akses dan bidang kerja harus dirawat kedap udara dengan 362 menggunakan paking yang efektif. Sistem cerobong asap harus memiliki sambungan yang tertutup secara efektif dan bila perlu diisolasi.
Shell boiler dan bagiannya harus terisolasi dengan baik dan harus dipastikan bahwa isolasinya sudah cukup. Jika isolasi yang digunakan pada boiler, pipa dan silinder air panas dipasang beberapa tahun yang lalu, hampir dipastikan isolasinya sudah tipis walaupun tampaknya dalam kondisi baik. Perlu diingat bahwa isolasi tersebut terpasang ketika biaya bahan bakar sangat rendah. Penambahan ketebalan akan lebih baik.
Di akhir waktu pemanasan/pemakaian, selama musim panas, boiler harus di tutup sepenuhnya dan permukaan dalam ditutup sepenuhnya dengan plat dengan sisipan dessicant. (Hanya diterapkan untuk boiler yang tidak dioperasikan diantara waktu pemanasan/ pemakaian).

Meningkatkan steam dan air panas boiler

Kotoran dalam air boiler yang terkumpul dalam boiler, memiliki batasan konsentrasinya yang bergantung pada jenis dan beban boiler. Blow down boiler harus diminimalkan, tetapi ketentuan densitas air harus dijaga. Panas dari air blow down sebaiknya dimanfaatkan.
Dalam steam boiler, apakah pengolahan air cukup untuk mencegah pembentukan foaming (pembentukan busa/buih) atau priming dan konsekuensinya membawa kelebihan air dan bahan kimia kedalam sistem steam? Untuk steam boiler, apakah pengendalian otomatis permukaan air bekerja? Adanya pipa interkoneksi dapat menjadi sangat berbahaya. Apakah pengecekkan telah dilakukan secara berkala terhadap kebocoran udara di sekitar boiler, pintu atau antara boiler dan cerobong asap? Yang disebutkan pertama akan mengurangi efisiensi, yang disebutkan kemudian dapat menurunkan kualitas kekeringan steam dan mendorong terjadinya kondensasi, korosi, dan Smutting.
diperlukan perbandingan bahan bakar/udara disetel. Detektor dan alat kontrol yang ada sebaiknya diberi label dan diperiksa secara berkala. Tampilan kunci pengaman harus memiliki penyetel manual dan alarm. Harus dilakukan pengujian, atau pemasangan indikator permanen pada
burner untuk memantau kondisi kondisi tekanan/suhu operasi.
Dalam boiler yang berbahan bakar minyak atau gas, kabel-kabel sistim fussible link untuk mematikan/shutdown jika ada kebakaran atau pemanasan berlebih yang melintasi jalan yang dilewati karyawan, harus ditempatkan pada posisi di atas kepala. Fasilitas emergency shutdown diletakkan pada pintu keluar ruang boiler.

Ketel Uap

Ditulis oleh Suparni Setyowati Rahayu pada 18-09-2009
Seperti sudah disebutkan di atas bahwa ketel uap adalah suatu pesawat yang digunakan untuk mengubah air yang ada di dalamnya menjadi uap dengan cara dipanaskan. Dengan adanya bahan perantara iar tersebut, maka di dalam ketel uap harus ada ruang atau tempat air.
contoh, untuk ketel pipa air, air berada di dalam pipapipa,sedangkan pemanasannya dari bagian luar (sekeliling) pipa tersebut. Sebaliknya untuk ketel pipa api, airnya berada di sekeliling pipa-pipa api. Cara menempatkan pipa api atau pipa air dibuat sedemikian rupa sehingga mendapatkan peredaran air dan pembentukan uap yang baik. Dengan adanya panas yang 359 dibutuhkan untuk pembentukan uap, pada ketel perlu dilengkapi dengan dapur. Macam konstruksi dapur juga harus ditempatkan sedemikian rupa sehingga peredaran air dalam ketel sempurna.
Dalam pembakaran suatu bahan bakar perlu juga adanya udara pembakaran. Peredaran udara dibuat sedemikian rupa agar pembakaran bahan bakar dapat berlangsung dengan baik. Uap yang dibentuk di dalam ketel mempunyai tekanan yang lebih besar dari pada tekanan udara luar, maka ketel harus mampu menahan tekanan uap tersebut. Kekuatan ketel uap tergantung dari bentuk dan bahannya.
Bentuk yang lebih kuat untuk menahan tekanan yang lebih besar dari dalam adalah bentuk bulat cembung dan silinder sebab dengan bentuk
semacam itu sukar berubah bentuknya yang disebabkan oleh tekanan dari dalam. Tetapi bentuk bulat cembung ini tidak digunakan untuk ketel uap karena konstruksinya yang sulit untuk dikerjakan. Oleh karena itu pada umumnya ketel uap dibuat dalam bentuk silinder.
Bahan untuk ketel uap harus baik karena disamping harus menahan tekanan yang tinggi juga harus tahan pada suhu yang tinggi. Biasanya digunakan baja Siemens-Martin yang liat dan mudah dikerjakan.

Pengolahan Internal

Ditulis oleh Suparni Setyowati Rahayu pada 17-09-2009
Pengolahan air dalam ketel bertujuan mengontrol korosi,kerak dan buih yang timbul dengan penambahan bahan kimia. Korosi dapat dicegah dengan penghilangan oksigen dan mengatur pH bersifat alkalis. Kerak (scaling) dikendalikan dengan mengikat kesadahan dalam air. Untuk mengendalikan kerak dan korosi digunakan WQ yang berisi natrium bisulfit dan natrium trifosfat. Natrium, bisulfit akan mengikat oksigen sehingga korosi bisa terhindar. Sedang natritum fosfat akan bereaksi dengan senyawa 356 penyebab kesadahan membentuk Ca3(PO4)2 yang berbentuk lumpur dan cenderung mengendap pada pH alkali. Lumpur tersebut akan berkumpul di dasar ketel dan dikeluarkan bersama blowdown.
2 NaHS03 + O2 -> 2 NaHSO4
2 Na3PO4.12 H2O + 3 CaCO3 -> Ca3(PO4)2 + 3 Na2CO3 + 4 H2O
2 Na3PO4.12 H2O + 3 CaSO4 -> C43(PO4)2 + 3 Na2SO4 + 2 H2O

Menara Pendingin (Cooling tower)

Cooling tower digunakan untuk mendinginkan air kondensat sebelum masuk ke dalam ketel. Air dilewatkan pada kisi – kisi sehingga terbentuk tirai air dan diberi blower di bagian atas untuk menghisap keluar udara panas dan dalam kisi.
Sebagian cooling tower dibuat dari red wood, yaitu sejenis kayu yang sangat tahan (awet) apabila secara terus -menerus kontak 357 dengan air. Bahan Isian (internal packing) biasanya merupakan susunan kayu yang dipasang horisontal. Ruang kosong menara sangat besar, biasanya lebih dari 90% supaya penurunan tekanan (pressure drop) udara bisa serendah mungkin.
Luas permukaan kontak antara udara dan air tidak hanya pada film cairan pada permukaan packing, tetapi juga pada permukaan tetesan air yang jatuh dan menyerupai hujan. Aliran udara dan air di dalam cooling tower bisa secara silang atau lawan arah (counter current) atau kombinasi dari keduanya.

Mengoperasikan Alat Penukar Ion

Ditulis oleh Suparni Setyowati Rahayu pada 16-09-2009
Pada proses kolom ganda, air mentah mula-mula masuk ke dalam kolom penulcar kation. Di sini sernua kation yang terkandung dalam air (terutama ion kalsium, magnesium dan natrium) ditukar dengan ion hidrogen. Dalarn kolom berikutnya yang berisi penukar anion, maka anion (terutama ion khlorida, sulfat dan bikarbonat) ditukar dengan ion hidroksil. Ion hidrogen yang berasal dari penukar kation dan ion hidroksil dari penukar anion akan membentuk ikatan dan menghasilkan air.
Setelah air terbentuk maka resin penukar ion harus diregenerasi. Pelaksanaan regenerasi pada proses kolorn ganda sangat sederhana. Ke dalam kolom penukar kation dialirkan asarn khlorida encer dan ke dalam kolom penukar anion dialirkan larutan natrium hidroksida encer. Regeneran yang berlebihan selanjutnya dibilas dengan air.
Pada proses unggun campuran – kolom tunggal, resin penukar kation dan penukar anion dicampur menjadi satu dalam sebuah kolom tunggal. Dengan proses unggun campuran dapat dicapai tingkat kemurnian air yang jauh lebih tinggi daripada dengan proses kolom ganda. Sebaliknya, pada proses unggun campuran regenerasi resin penukar lebih kompleks.
gb51
Langkah-langkah kerja pada regenerasi unggun campuran:Pernisahan resin penukar kation dan penukar anion dengan cara klasifikasi menggunakan air (pencucian kembali dari bawah ke atas). Dalam hal ini resin penukar anion yang lebih ringan (kebanyakan berwarna lebih terang) akan berada di atas resin 349 penukar kation yang lebih berat (kebanyakan berwarna lebih gelap). Pencucian kembali harus dilangsungkan terus sampai di antara kedua resin terlihat suatu lapisan pemisah yang tajam.
  1. Untuk regenerasi, regeneran bersama dengan air dialirkan melewati kedua lapisan resin Asam khlorida encer dialirkan dari bawah ke atas melewati resin penukar kation, dan dikeluarkan dari kolom pada ketinggian lapisan pernisah. Larutan natrium hidroksida encer dialirkan dari atas ke bawah melewati resin penukar anion, juga dikeluarkan pada keting gian lapisan pemisah.
  2. Kelebihan kedua regeneran kemudian dicuci dengan air
  3. Ketinggian permukaan air dalam kolom diturunkan dan kedua resin penukar dicampur dengan cara memasukkan udara tekan dari ujung bawah kolom.
  4. Pencucian ulang unggun campuran dengan air dari atas ke bawah, sampai alat ukur konduktivitas menunjukkan kondisi kemurnian air yang diinginkan.
Sekarang instalasi siap untuk dioperasikan lagi. Baik pada instalasi pclunakan maupun pada instalasi demineralisasi air, maka pengalihan dari kondisi operasi ke proses regenerasi, pelaksanaan regenerasinya sendiri, dan pengalilian kembah ke kondisi 350 operasi dapat dilakukan baik secara manual maupun secara otomatik.
Untuk mencapai kualitas air atau performansi yang optimal dan untuk mencegah terjadinya kerusakan pada resin penukar, maka petunjuk kerja yang diberikan oleh pabrik pembuat instalasi (misalnya mengenai urutan pelaksanaan operasi, kuantitas dan konsentrasi regeneran, waktu regenerasi dan waktu pencucian) harus diikuti dengan seksama.
Perhatian: Pada saat bekerja dengan asam dain basa yang diperlukan untuk regenerasi, perlengkapan keselamatan perorangan yang sesuai harus digunakan. Air buangan yang keluar pada regenerasi dapat bersifat asam, basa atau mengandung garam. dan karena itu dalam hubungannya dengan pelestarian lingkungan harus ditangani seperti air limbah kimia.
Ukuran performansi sebuah instalasi penukar ion adalah kuantitas cairan yang diproduksi per jam (atau selang waktu di antara dua regenerasi). Performansi tergantung pada besarnya alat atau kuantitas penukar, pada kuantitas ion yang akan dipisahkan (dengan syarat kemurnian air yang diinginkan telah tertentu) dan pada tingkat kemurnian yang diminta. Untuk operasi yang semi kontinu (bila pengolahan air tidak bolch berhenti di tengah-tengah) diperlukan dua buah unit yang dihubungkan secara paralel. Karena proses pertukaran dan proses regenerasi tidak dapat berlangsung pada saat yang bersamaan, kedua unit tersebut bekerja secara bergantian, yang satu sebagai penukar ketika yang lain sedang regenerasi.
gb53
Beberapa jenis proses pertukaran sering juga digabungkan bersama. Misalnya untuk meringankan beban kolorn utama dari instalasi unggun campuran (untuk meningkatkan perforinansinya) dapat dipasang sebuah kolom pelunak air di depannya.

Penukar Ion

Ditulis oleh Suparni Setyowati Rahayu pada 15-09-2009
Air sungai dan air tanah mula-mula ditampung di bak tarik yang dilengkapi pompa untuk dialirkan ke bak pencampur dan diberi tawas sebagai flokulan. Air yang telah diberi tawas dialirkan ke bak penggumpal untuk memberi waktu flokulasi pengotor dalam air. Air dengan flok-flok pengotor dialirkan ke bak pengendap agar flok-flok yang terbentuk turun dan terpisah dari air. Air yang keluar dari bak pengendap sudah jernih tapi masih ada pengotor yang melayang,oleh karena itu air kemudian disaring dengan saringan untuk memisahkan partikel ini.
Air yang telah disaring masih mengandung zat-zat terlarut yang menimbulkan kesadahan. Untuk menghilangkan pengotor yang terlarut ini digunakan zat yang dapat menyerap ion-ion dalam larutan tersebut. Dengan ion exchanger, diharapkan air yang akan digunakan pada proses memiliki kesadahan sesedikit mungkin bahkan 0 agar tidak menimbulkan kerak.

Kondisi Peralatan Penukar Ion

Proses penghilangan ion-ion yang terlarut dalam air dapat melibatkan penukar kation (cation exchanger) yang berupa resin Na (R-Na). Proses-pertukaran-ion natrium merupakan proses yang paling banyak digunakan untuk melunakkan air. Dalam proses pelunakan ini, ion-ion kalsium dan magnesium disingkirkan dari air berkesadahan tinggi dengan jalan pertukaran kation dengan natrium. Bila resin penukar itu sudah selesai menyingkirkan 346 sebagian besar ion kalsium dan magnesium sampai batas kapasitasnya, resin itu di kemudian diregenerasi kembali ke dalam bentuk natriumnya dengan menggunakan larutan garam dengan pH antara 6 sampai 8. Kapasitas pertukaran resin polistirena besarnya 650 kg/m3 bila diregenerasikan dengan 250 g garam per kilogram kesadahan yang dibuang.
gb5-2
Untuk penukar kation siklus natirum atau hidrogen biasanya digunakan resin sintetik jenis sulfonat stirena -divinilbenzena. Resin ini sangat stabil pada suhu tinggi (sampai 150 oC) dan dalam pH antara 0 sampai 14. Di samping itu, bahan ini sangat tahan terhadap oksidasi. Kapasitas total penukar kation bisa mencapai 925 kg CaCO3 per meter kubik penukar ion dengan siklus hidrogen dan sampai 810 kg CaCO3 per meter kubik dengan siklus natrium.Namun dalam praktiknya kapasitas operasi tidak setinggi itu.
Dalam reaksi pelunakan air di bawah ini, lambang R menunjukkan radikal penukar kation. Resin tersebut menghilangkan ion Ca 2+ dan Mg 2+ penyebab kesadahan. Reaksinya sebagai berikut:
CaCO3 + 2 R-Na -> R2-Ca + Na2C03
MgCO3 + 2 R-Na-> R2-Mg + Na2C03
Bila tanur penukar kation sudah habis kemampuannya untuk menghasilkan air lunak, unit pelunak itu dihentikan; lalu dicuci balik (backwash) untuk membersihkannya dan mengklasifikasikan partikel resin di dalam tanur itu kembali:kemudian diregenerasi dengan larutan garam biasa (natrium klorida) yang menyingkirkan kalsium dan magnesium dalam bentuk klorida yang dapat larut dan sekaligus mengembalikan penukar kation itu ke dalam bentuk natriumnya.
Tanur itu dicuci lagi untuk membersihkannya dari hasil samping yang dapat larut
dan dari kelebihan garam; kemudian dikembalikan ke operasi untuk selanjutnya melunakkan air. Reaksi regenerasi menggunakan air gararn (NaCI) dapat dilukiskan sebagai berikut:
R2-Ca + 2 NaCI -> 2 R-Na + CaCl2
R2-Mg + 2 NaCI -> R-Na + MgCl2

Proses Neutralisasi

Ditulis oleh Suparni Setyowati Rahayu pada 14-09-2009
Proses ini dilakukan untuk menghilangkan/menetralkan Free Fatty Acid (FFA) dan impurities lainnya pada Crude Corn Oil dengan reaksi penyabunan (saponifikasi). Crude Oil dipompa ke tangki netralisasi, kemudian dipanaskan pada suhu 60 oC, selanjutnya ditambah larutan NaCl sambil diaduk dan disemprotkan air melalui sprayer dari atas. Settling dikenakan selama 4 jam sampai membentuk lapisan antara minyak hasil netralisasi dibagian bawah dan soap stock dibagian atas.
Soap Stock dipisahkan dari minyaknya dipompa kedalam tangki penampung, yaitu Neutralized oil tank. Dalam proses neutralisasi terjadi reaksi penyabunan : Sabun yang terbentuk dapat mengabsorbsi lendir, sebagian zat zat warna serta kotoran kotoran lain yang terdapat dalam minyak jagung. Dari proses dengan NaOH Ini dapat mengurangi FFA sampai 0,03%.

Proses Pemucatan

Proses ini bertujuan untuk menghilangkan zat warna , karena diantara zat warna memiliki daya larut yang tinggi sehingga sukar dihilangkan selama proses netralisasi, maka zat warna ini perlu diserap dengan absorbence. Warna kuning dan warna merah pada minyak jagung ini disebabkan adanya pigment pigment dan pigment pigment ini hanya dapat dihilangkan dengan cara diserap.
Bleaching earth dapat menyerap warna merah sedang karbon aktif menyerap warna kuning. Proses ini dilakukan dalam bleacher yang bekerja dalam suasana vacum ( 60 cm Hg ), pada suhu 110 oC sambil diaduk selama 30 menit. Kemudian didinginkan pada suhu 70oC dan dipompa ke filter press dan filtrat yang keluar adalah bleached oil dan dikenakan proses deodorisasi.

Proses Deodorisasi

Tujuan dari proses ini adalah untuk menghilangkan bau dan rasa yang tidak diinginkan yang terdapat dalam minyak jagung, dan proses ini dilakukan dalam tangki deodorizer yang bekerja pada tekanan vacuum 74 cm Hg, suhu 200 oC.   Pada suhu 200 oC dan tekananrendah, maka komponen komponen bau dan rasa yang tidak diinginkan (volatile
matter), akan keluar bersama sama uap panas.

Unit Corn Mill

Ditulis oleh Suparni Setyowati Rahayu pada 13-09-2009

Unit Corn Mill

Mengolah bagian karbohydrat dari jagung, sehingga menghasilkan bermacam macam hasil : beras jagung, lembaga jagung, tepung jagung, dan dedak jagung.
Unit Corn Mill ini meliputi 3 tingkat proses, yaitu :
  1. Proses Pengeringan ( drying process ).
    Unit ini bertugas untuk menurunkan kadar air dalam jagung apabila lebih dari 14%, pada suhu 70 – 90 oC dengan sistim udara panas yang mengadakan kontak langsung dengan jagung yang dikeringkan.
  2. Proses Pemecahan ( Degerminating Process )
    Butir butir jagung yang kadar airnya telah dipenuhi dan bersih,dikenakan proses pemecahan dalam degerminator, yaitu sebuah alat yang terdiri dari lempengan plat berbentuk silinder, bagian pinggirnya diberi potongan plat yang dilekatkan miring dan berfungsi sebagai penghancur dan bagian luarnya diselubungi dengan plat lebar yang berlubang lubang dan berfungsi sebagai screen. Dari proses ini butir butir jagung yang halus diangkut ke Roller Mill (penggiling), sedang yang masih kasar direcycle ke degerminator. Butir butir jagung halus berukuran maksimum 5.000 micron.
  3. Proses Penggilingan ( milling )
    Roller Mill merupakan alat untuk menggiling campuran butir butir kasar dan medium supaya memperoleh butir butir jagung yang lebih halus, kemudian dipisahkan melalui screen yang bergerak secara longitudinal. Partikel partikel yang tidak tersaring dikembalikan ke Roller Mill untuk penggilingan ulang, sedang partikel partikel yang menembus saringan berukuran maksimum 2.400 micron merupakan finished product dari proses Corn Mill.
Unit Oil Mill
Mengolah lembaga jagung untuk menghasilkan minyak jagung yang bersih dari segala impurities sampai siap untuk dikonsumsi. Unit ini mengolah product yang diperoleh dari Unit Corn Mill sampai diperoleh minyak jagung (Corn Oil), disamping hasil sampingnya:Soap Stock dan Maize Cake Meal.
Proses pengolahan pada Unit Oil Mill ini meliputi 3 tingkatan proses, yaitu :
a.Unit Persiapan dan Ekstraksi
b.Unit Refinery
c.Canning
Lembaga jagung berkadar minyak 24%, dan karena lembaga jagung ini termasuk biji-bijian yang kandungan minyaknya rendah, maka pengambilan minyaknya ini akan lebih efficient melalui proses extractie dengan solvent organik. Kecuali kadar airnya 14%, maka penyimpanan lembaga jagung jangan terlalu lama, sebab bisa terjadi proses fermentasi yang bisa menyebabkan kadar Free Fatty Acid akan naik. Asam lemak sebagai free fatty acid yang tergolong paling banyak dalam minyak jagung adalah asam oleat : C17H33COOH dan juga asam Linoleat : C17H31COOH.
a.Unit Persiapan dan Ekstraksi
Lembaga jagung dikenakan proses pemasakan dalam cooker pada suhu 90oC dan proses penghalusan dalam alat penggumpal sehingga dicapai kehalusan 0,2 mm. Tujuan dari flaker process (proses penggumpalan) adalah untuk memperluas permukaan lembaga, sehingga kontak antara solvent dan sel sel minyak akan lebih besar, sehingga proses ekstraksi mencapai hasil yang maksimal. Hasilnya disebut Flaker Germ.
Cooker berpengaduk untuk memasak lembaga,pemanasannya dapat dengan indirect atau direct steam, dan suhu yang diperlukan adalah 80 – 90 oC. Kadar air maksimum harus 11% agar prose ekstraksi berjalan baik, jika kadar air kurang dari 11% perlu ditambah air secara imbibisi.
2.Unit Extraction
n – hexane ( C6H14 ). Extractor extractor terdiri dari buckets ( ember ) sebanyak 55 buah yang disusun 4 tingkat secara paralel, dan setiap buckets berkapasitas 25 kg dan bergerak melingkari roda yang berputar, yang digerakkan oleh “Piston Pump“ yang kecepatannya diatur oleh electric timer.Susunan buckets pada rantai diletakkan dalam ruangan tertutup untuk menghindari hilangnya solvent karena menguap. Atas dasar kapasitas masing masing buckets,jumlah buckets dan pengaturan waktu dengan electric timer, maka dapat ditentukan kapasitas produksi setiap harinya.

Pembuatan Biodiesel dengan Katalis Biologis

Ditulis oleh Suparni Setyowati Rahayu pada 12-09-2009
Teknik katalisasi biologis (biocatalysis) untuk memproduksi biodiesel, oleic acid alkyl ester (dalam hal ini butil oleat), dari triolein dengan beberapa macam katalis biologis, yakni Candida Antarctica B, Rizhomucor Miehei, dan Pseudomonas Cepacia. Karena mahalnya harga katalis biologis dibandingkan katalis kimiawi, maka penggunaan katalis biologis tersebut dilakukan dengan cara immobilisasi pada katalis.
Teknik ini sekaligus memungkinkan dilakukannya proses kontinyu dalam produksi biodiesel. Temperatur optimum reaksi ini adalah 40oC. Selain itu juga dapat digunakan katalis padat (solid catalyst) dari gula dengan cara melakukan pirolisis terhadap senyawa gula (D-glucose dan sucrose) pada temperatur di atas 300oC. Proses ini menyebabkan karbonisasi tak sempurna terhadap senyawa gula dan terbentuknya lembar-lembar karbon aromatik polisiklis (polycyclic aromatic carbon sheets). Asam sulfat (sulphuric acid) kemudian digunakan untuk mensulfonasi cincin aromatik tersebut sehingga menghasilkan katalis.
Katalis padat yang dihasilkan dengan cara ini disebutkan memiliki kemampuan mengkonversi minyak tumbuhan menjadi biodiesel lebih tinggi dibandingkan katalis asam sulfat cair ataupun katalis asam padat lain yang telah ada sebelumnya.
gb486

Industri Minyak Jagung

Jagung dapat diolah menjadi berbagai macam hasil, agar dapat memberi manfaat yang lebih banyak, dengan memperhatikan selera dan permintaan konsumen.

Proses Pengolahan Jagung

Proses pengolahan terhadap jagung untuk memperoleh minyaknya terdiri dari :
  1. Bagian karbohydrat, diproses menjadi hasil hasil produksi antara lain: beras jagung, tepung jagung, semolina (bahan baku pembuatan bier) dan lain lain.
  2. Bagian Germ ( lembaga ), diproses menjadi minyak jagung, dipakai untuk minyak goreng.
Butir jagung mempunyai kadar minyak rata rata 3 %, tetapi jika diambil lembaganya saja, maka kadar minyak dalam lembaga itu rata rata antara 22 – 28%. Minyak jagung adalah ester dari glyserol dengan asam lemak, dimana semua radikal ( OH ) dari glyserol sudah di esterifikasi, karenanya disebut : Tri Glyserida Ester.
Minyak jagung merupakan minyak yang kaya akan poly unsaturated fat, yaitu lemak tak jenuh yang justru aktif menurunkan kadar cholesterol dalam darah. Cholesterol adalah sterol yang terdapat dalam fat, dan bersifat dapat membuat kerak dalam pembuluh darah, sehingga akan terjadi penyempitan dalam pembuluh darah tersebut akibatnya orang yang terkena akan menderita penyakit “ tekanan darah tinggi. Rumus molekul Cholesterol : C27 H46 O yang umumnya banyak terdapat dalam Lemak hewan.

Industri Biodiesel

Ditulis oleh Suparni Setyowati Rahayu pada 11-09-2009
Biodiesel merupakan senyawa kimia sederhana dengan kandungan enam sampai tujuh macam ester asam lemak. Biodiesel didefinisikan sebagai metil ester dengan panjang rantai karbon antara 12 sampai 20 dari asam lemak turunan dari lipid contohnya minyak nabati atau lemak hewani. Minyak nabati atau lemak hewani dapat dibuat biodiesel dengan reaksi transesterifikasi dengan menggunakan alkohol.Komposisi dan sifat kimia dari biodiesel tergantung pada kemurnian, panjang pendek, derajat kejenuhan, dan struktur rantai alkil asam lemak penyusunnya.
Biodiesel merupakan bahan bakar alternatif dari sumber terbarukan (renewable), dengan komposisi ester asam lemak dari minyak nabati antara lain: minyak kelapa sawit, minyak kelapa, minyak jarak pagar, minyak biji kapuk, dan masih ada lebih dari 30 macam tumbuhan Indonesia yang potensial untuk dijadikan biodiesel.

Proses pembuatan Biodiesel

Biodiesel dibuat melalui suatu proses kimia yang disebut transesterifikasi. Proses ini menghasilkan dua produk yaitu metil esters (biodiesel)/mono-alkyl esters dan gliserin yang merupakan produk samping. Bahan baku utama untuk pembuatan biodiesel antara lain minyak nabati, lemak hewani, lemak bekas/lemak daur ulang. Sedangkan sebagai bahan baku penunjang yaitu alkohol. Pada pembuatan biodiesel dibutuhkan katalis untuk proses esterifikasi. Produk biodiesel tergantung pada minyak nabati yang digunakan sebagai bahan baku serta pengolahan pendahuluan dari bahan baku tersebut.
Alkohol yang digunakan sebagai pereaksi untuk minyak nabati adalah methanol, namun dapat pula digunakan ethanol, isopropanol atau butyl, tetapi perlu diperhatikan juga kandungan air dalam alcohol tersebut. Bila kandungan air tinggi akan mempengaruhi hasil biodiesel kualitasnya rendah, karena kandungan sabun, ALB dan trigiserida tinggi. Disamping itu hasil biodiesel juga dipengaruhi oleh tingginya suhu operasi proses produksi, lamanya waktu pencampuran atau kecepatan pencampuran alkohol.
Katalisator dibutuhkan pula guna meningkatkan daya larut pada saat reaksi berlangsung, umumnya katalis yang digunakan bersifat basa kuat yaitu NaOH atau KOH atau natrium metoksida. Katalis yang akan dipilih tergantung minyak nabati yang digunakan,apabila digunakan minyak mentah dengan kandungan ALB kurang dari 2 %, disamping terbentuk sabun dan juga gliserin.
Katalis tersebut pada umumnya sangat higroskopis dan bereaksi membentuk larutan kimia yang akan dihancurkan oleh reaktan alkohol. Jika banyak air yang diserap oleh katalis maka kerja katalis kurang baik sehingga produk biodiesel kurang baik. Setelah reaksi selesai, katalis harus di netralkan dengan penambahan asam mineral kuat. Setelah biodiesel dicuci proses netralisasi juga dapat dilakukan dengan penambahan air pencuci, HCl juga dapat dipakai untuk 318 proses netralisasi katalis basa, bila digunakan asam phosphate akan menghasil pupuk phosphat (K3PO4)

Faktor-faktor yang mempengaruhi kecepatan reaksi

Ditulis oleh Suparni Setyowati Rahayu pada 10-09-2009
gbaly
  1. Kecepatan Reaksi dipengaruhi oleh ukuran partikel/zat.
    Semakin luas permukaan maka semakin banyak tempat bersentuhan untuk berlangsungnya reaksi. Luas permukaan zat dapat dicapai dengan cara memperkecil ukuran zat tersebut
  2. Kecepatan Reaksi dipengaruhi oleh suhu.
    Semakin tinggi suhu reaksi, kecepatan reaksi juga akan makin meningkat sesuai dengan teori Arhenius.
  3. Kecepatan Reaksi dipengaruhi oleh katalis.
    Adanya katalisator dalam reaksi dapat mempercepat jalannya suatu reaksi. Kereakifan dari katalis bergantung dari jenis dan konsentrasi yang digunakan.

Katalis

Katalis adalah suatu zat yang mempercepat suatu laju reaksi, namun ia sendiri, secara kimiawi, tidak berubah pada akhir reaksi. Ketika reaksi selesai, maka akan didapatkan kembali massa katalasis yang sama seperti pada awal ditambahkan.
Katalis dapat dibagi berdasarkan dua tipe dasar, yaitu reaksi heterogen dan reaksi homogen. Didalam reaksi heterogen, katalis berada dalam fase yang berbeda dengan reaktan. Sedangkan pada dalam reaksi homogen, katalis berada dalam fase yang sama dengan reaktan.
Jika kita melihat suatu campuran dan dapat melihat suatu batas antara dua komponen, dua komponen itu berada dalam fase yang berbeda. Campuran antara padat dan cair terdiri dari dua fase. Campuran antara beberapa senyawa kimia dalam satu larutan terdiri hanya dari satu fase, karena kita tidak dapat melihat batas antara senyawa-senyawa kimia tersebut.
gbfase-padatan
Fase berbeda denga istilah keadaan fisik (padat, cair dan gas). Fase dapat juga meliputi padat, cair dan gas, akan tetapi lebih sedikit luas. Fase juga dapat diterapkan dalam dua zat cair dimana keduanya tidak saling melarutkan (contoh, minyak dan air).
gbcairan

Energi Aktivasi

Tumbukan-tumbukan akan menghasilkan reaksi jika partikel-partikel bertumbukan dengan energi yang cukup untuk memulai suatu reaksi. Energi minimum yang diperlukan disebut dengan reaksi aktivasi energi. Kita dapat menggambarkan keadaan dari energi aktivasi pada distribusi Maxwell-Boltzmann seperti ini:

Air Pengisi Ketel

Ditulis oleh Suparni Setyowati Rahayu pada 09-09-2009

Sumber-sumber air pengisi ketel

Macam-macam air yang dapat digunakan sebagai air pengisi ketel adalah air sumur dan air kondensat. Air kondensat sudah murni sehingga tidak perlu mengalami pengolahan yang khusus, sedangkan untuk air yang berasal dari sumur perlu mendapat pengolahan pengolahan lebih dahulu.

Syarat Air Pengisi Ketel

Pada dasamya air yang akan digunakan, terutama yang digunakan sebagai air pengisi ketel, harus memenuhi syarat. Air  yang berasal dari alam (sungai dan tanah) tidak ada yang dalam keadaan mumi, biasanya terdapat pengotor-pengotor, antara lain :
  1. Zat tersuspensi, seperti lumpur dan tanah liat. Biasanya dihilangkan dengan penyaringan.
  2. Zat terlarut, seperti garam-garam mineral (garam magnesium,kalsium dan lain-lain).
Pada dasamya air yang akan digunakan, terutama yang digunakan sebagai air pengisi ketel, harus memenuhi syarat. Air yang berasal dari alam (sungai dan tanah) tidak ada yang dalam keadaan murni, biasanya terdapat pengotor-pengotor, antara lain :
  1. Zat tersuspensi, seperti lumpur dan tanah liat. Biasanya dihilangkan dengan penyaringan.
  2. Zat terlarut, seperti garam-garam mineral (garam magnesium, kalsium dan lain-lain).

Pengolahan air

Pemurnian dan pelunakan air dapat dilakukan dengan berbagai cara, tergantung pada rencana penggunaan air itu sendiri. Istilah pelunakan (softening) digunakan untuk proses untuk menyingkirkan atau mengurangi kesadahan air. Sedangkan pemurnian (purification)  berbeda dari pelunakan, yaitu menyingkirkan atau menghilangkan bahan-bahan organik dan mikroorganisme dari air.Klasifikasi (clasification) kadang-kadang amat penting dan digunakan bersamaan dengan pengendapan (precipitation) dalam proses pelunakan air dingin.

Unit Penyediaan Listrik

Ditulis oleh Suparni Setyowati Rahayu pada 08-09-2009
Dalam masyarakat modern yang industri dan perekonomiannya maju, tenaga listrik memegang peranan yang sangat menentukan. Sulit dibayangkan, sebuah pabrik tanpa pemakaian tenaga listrik.Karena untuk menggerakkan beberapa alat misalnya, dibutuhkan motor listrik. Dan motor-motor listrik yang dipakai pada berbagai alat semuanya membutuhkan listrik sebagai tenaga penggerak.
Selain untuk menggerakkan motor, listrik di industri juga dibutuhkan untuk pemanasan tanur dan proses elektrokimia.Sedangkan di luar kebutuhan untuk industri, tenaga listrik dipakai untuk kebutuhan kantor, pemanasan atau pendinginan udara, lampu penerangan, lemari es, dapur dan keperluan kerumahtanggaan lainnya.
Berkaitan dengan penggunaan motor listrik, pada instalasi pabrik yang agak tua dan sederhana sering menggunakan motor secara bersamaan, yaitu satu motor untuk menggerakkan beberapa alat produksi sekaligus dengan menggunakan gigi transmisi atau sabuk transmisi. Hal ini dilakukan dengan pertimbangan biaya investasi. Namun penggunaan motor secara bersamaan ini kurang baik karena bisa berakibat mudah terjadi kecelakaan. Lagi pula sering terjadi motor tersebut menggerakkan hanya satu alat produksi, sedangkan alat produksi yang lain tidak dipakai sehingga motor dimanfaatkan di bawah kapasitas.
Pada instalasi pabrik yang lebih modern umumnya dipakai motor tersendiri untuk setiap alat produksi, meskipun menggunakan motor kecil saja. Konstruksi motor yang lebih kecil dirancang dengan bentuk yang kompak dan tertutup agar motor tidak mudah rusak karena pengotoran. Hal ini mengingat pada motor yang lebih kecil membutuhkan pendinginan yang lebih baik karena bagian untuk pendinginan berukuran lebih kecil yaitu dengan membuat lubanglubang pada rumah stator. Akibatnya motor akan lebih mudah menjadi
343 kotor terutama tempat kerja yang banyak menghasilkan debu dan
pengotor seperti pabrik semen atau tekstil.

UNIT PENYEDIAAN AIR

Kebutuhan air pada umumnya dan air pengisi ketel pada khususnya pada industri-industri yang menggunakan tenaga uap adalah suatu hal yang amat perlu mendapat perhatian. Pada pabrik-pabrik dimana uap (steam) merupakan sumber tenaga (sebagai tenaga penggerak) dan sekaligus juga merupakan sumber panas (dipakai dalam pemanasan, penguapan dan pengkristalan).

Utilitas Pabrik

Ditulis oleh Suparni Setyowati Rahayu pada 07-09-2009
Sebuah pabrik mempunyai dua sistem proses utama, yaitu sistem pereaksian dan sistem proses pemisahan & pemurnian. Kedua sistem tersebut membutuhkan kondisi operasi pada suhu dan tekanan tertentu. Dalam pabrik, panas biasanya ‘disimpan’ dalam fluida yang dijaga pada suhu dan tekanan tertentu. Fluida yang paling umum digunakan adalah air panas dan uap air karena alasan murah dan memiliki kapasitas panas tinggi. Fluida lain biasanya digunakan untuk kondisi pertukaran panas pada suhu di atas 100 oC pada tekanan atmosfer. Air atau uap air bertekanan (dinamakan kukus atau steam) mendapatkan panas dari ketel uap (boiler).
Sistem pemindahan panas bertugas memberikan panas dan menyerap panas. Misalnya, menyerap panas dari sistem proses yang menghasilkan energi seperti sistem proses yang melibatkan reaksi eksotermik atau menyerap panas agar kondisi sistem di bawah suhu ruang atau suhu sekitar. Untuk penyerap panas agar suhu di bawah suhu ruang biasanya pabrik menggunakan refrigerant, bahan yang sama dengan yang bekerja pada lemari es. Penggunaan air sebagai media pendingin juga dibatasi sifat fisiknya, yaitu titik didih dan titik beku. Suhu air pendingin perlu dikembalikan ke suhu sekitar atau suhu ruang agar bisa difungsikan kembali sebagi pendingin. Sistem pemroses yang melakukan ini adalah cooling tower.
Cooling tower, boiler dan tungku pembakaran merupakan sistemsistem pemroses untuk sistem penyedia panas dan sistem pembuang panas. Kedua sistem proses ini bersama-sama dengan sistem penyedia udara bertekanan, sistem penyedia listrik dan air bersih untuk kebutuhan produksi merupakan sistem penunjang berlangsungnya sistem proses utama yang dinamakan sistem utilitas. Kebutuhan sistem utilitas dan kinerjanya tergantung pada seberapa baik sistem utilitas tersebut mampu ‘melayani’ kebutuhan sistem proses utama dan tergantung pada efisiensi penggunaan bahan baku dan bahan bakar.
Pabrik tidak harus mempunyai sistem pemroses utilitas sendiri.Listrik misalnya, pabrik bisa membelinya dari PLN jika kapasitas PLN setempat mencukupi atau membeli dari pabrik tetangga. Demikian pula untuk unit pengolahan limbah, unit penyedia uap air & air pendingin dan unit penyedia udara bertekanan.

Tidak ada komentar:

Posting Komentar